{"title":"Traffic Stream Short-term State Prediction using Machine Learning Techniques","authors":"Mohammed Elhenawy, H. Rakha, Hao Chen","doi":"10.5220/0005895701240129","DOIUrl":null,"url":null,"abstract":": The paper addresses the problem of stretch wide short-term prediction of traffic stream state. The problem is a multivariate problem where the responses are the speeds or flows on different road segments at different time horizons. Recognizing that short-term traffic state prediction is a multivariate problem, there is a need to maintain the spatiotemporal traffic state correlations. Two cutting-edge machine learning algorithms are used to predict the stretch-wide traffic stream traffic state up to 120 minutes in the future. Furthermore, the divide and conquer approach was used to divide the large prediction problem into a set of smaller overlapping problems. These smaller problems are solved using a medium configuration PC in a reasonable time (less than a minute), which makes the proposed technique suitable for practical applications.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005895701240129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The paper addresses the problem of stretch wide short-term prediction of traffic stream state. The problem is a multivariate problem where the responses are the speeds or flows on different road segments at different time horizons. Recognizing that short-term traffic state prediction is a multivariate problem, there is a need to maintain the spatiotemporal traffic state correlations. Two cutting-edge machine learning algorithms are used to predict the stretch-wide traffic stream traffic state up to 120 minutes in the future. Furthermore, the divide and conquer approach was used to divide the large prediction problem into a set of smaller overlapping problems. These smaller problems are solved using a medium configuration PC in a reasonable time (less than a minute), which makes the proposed technique suitable for practical applications.