Intrusion detection under covariate shift using modified support vector machine and modified backpropagation

Tran Dinh Cuong, Nguyen Linh Giang
{"title":"Intrusion detection under covariate shift using modified support vector machine and modified backpropagation","authors":"Tran Dinh Cuong, Nguyen Linh Giang","doi":"10.1145/2350716.2350756","DOIUrl":null,"url":null,"abstract":"In this paper, we address the dataset shift problem in building intrusion detection systems by assuming that network traffic variants follow the covariate shift model. Based on two recent works on direct density ratio estimation which are kernel mean matching and unconstrained least squares importance fitting, we propose to modify two well-known classification techniques: neural networks with back propagation and support vector machine in order to make these techniques work better under covariate shift effect. We evaluated the modified techniques on a benchmark intrusion detection dataset, the KDD Cup 1999, and got higher results on predication accuracy of network behaviors compared with the original techniques.","PeriodicalId":208300,"journal":{"name":"Proceedings of the 3rd Symposium on Information and Communication Technology","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2350716.2350756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we address the dataset shift problem in building intrusion detection systems by assuming that network traffic variants follow the covariate shift model. Based on two recent works on direct density ratio estimation which are kernel mean matching and unconstrained least squares importance fitting, we propose to modify two well-known classification techniques: neural networks with back propagation and support vector machine in order to make these techniques work better under covariate shift effect. We evaluated the modified techniques on a benchmark intrusion detection dataset, the KDD Cup 1999, and got higher results on predication accuracy of network behaviors compared with the original techniques.
基于改进支持向量机和改进反向传播的协变量移位入侵检测
在本文中,我们通过假设网络流量变量遵循协变量移位模型来解决构建入侵检测系统中的数据集移位问题。基于核均值匹配和无约束最小二乘重要度拟合这两种直接密度比估计的最新研究成果,本文提出对神经网络反向传播和支持向量机两种著名的分类技术进行改进,使其在协变量移位效应下能够更好地工作。我们在一个入侵检测基准数据集KDD Cup 1999上对改进后的技术进行了评估,与原始技术相比,改进后的技术在网络行为预测精度方面取得了更高的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信