Classification of sMRI for Alzheimer's disease Diagnosis with CNN: Single Siamese Networks with 2D+? Approach and Fusion on ADNI

Karim Aderghal, J. Benois-Pineau, K. Afdel
{"title":"Classification of sMRI for Alzheimer's disease Diagnosis with CNN: Single Siamese Networks with 2D+? Approach and Fusion on ADNI","authors":"Karim Aderghal, J. Benois-Pineau, K. Afdel","doi":"10.1145/3078971.3079010","DOIUrl":null,"url":null,"abstract":"The methods of Content-Based visual information indexing and retrieval penetrate into Healthcare and become popular in Computer-Aided Diagnostics. The PhD research we have started 13 months ago is devoted to the multimodal classification of MRI brain scans for Alzheimer Disease diagnostics. We use the winner classifier, such as CNN. We first proposed an original 2D+ approach. It avoids heavy volumetric computations and uses domain knowledge on Alzheimer biomarkers. We study discriminative power of different brain projections. Three binary classification tasks are considered separating Alzheimer Disease (AD) patients from Mild Cognitive Impairment (MCI) and Normal Control subject (NC). Two fusion methods on FC layer and on the single-projection CNN output show better performances, up to 91% of accuracy is achieved. The results are competitive with the SOA which uses heavier algorithmic chain.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

The methods of Content-Based visual information indexing and retrieval penetrate into Healthcare and become popular in Computer-Aided Diagnostics. The PhD research we have started 13 months ago is devoted to the multimodal classification of MRI brain scans for Alzheimer Disease diagnostics. We use the winner classifier, such as CNN. We first proposed an original 2D+ approach. It avoids heavy volumetric computations and uses domain knowledge on Alzheimer biomarkers. We study discriminative power of different brain projections. Three binary classification tasks are considered separating Alzheimer Disease (AD) patients from Mild Cognitive Impairment (MCI) and Normal Control subject (NC). Two fusion methods on FC layer and on the single-projection CNN output show better performances, up to 91% of accuracy is achieved. The results are competitive with the SOA which uses heavier algorithmic chain.
用CNN诊断阿尔茨海默病的sMRI分类:2D+的单暹罗网络?ADNI的入路与融合
基于内容的可视化信息索引与检索方法渗透到医疗卫生领域,在计算机辅助诊断领域得到广泛应用。我们在13个月前开始的博士研究致力于MRI脑扫描的多模态分类,用于阿尔茨海默病的诊断。我们使用赢家分类器,比如CNN。我们首先提出了一种新颖的2D+方法。它避免了大量的体积计算,并利用了阿尔茨海默病生物标志物的领域知识。我们研究不同脑投射的辨别能力。采用三种二元分类任务将阿尔茨海默病(AD)患者与轻度认知障碍(MCI)和正常对照(NC)进行了区分。两种融合方法在FC层和单投影CNN输出上表现出较好的效果,准确率可达91%。其结果与使用较重算法链的SOA具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信