A network with multi-partitioning units

Y. Tan, T. Ejima
{"title":"A network with multi-partitioning units","authors":"Y. Tan, T. Ejima","doi":"10.1109/IJCNN.1989.118279","DOIUrl":null,"url":null,"abstract":"The authors propose a fuzzy partition model (FPM), a multilayer feedforward perceptron-like network. The most important point of FPM is that it has multiple-input/output units which are upper compatible with the threshold units commonly used in the backpropagation (BP) model. The number of outputs is called the degree N of that unit, and an FPM unit can classify input patterns into N categories. Because the sum total of the output values of an FPM unit is always one, Kullback divergence is adopted as a network measure to derive its learning rule. The fact that the learning rule does not include the derivative of a sigmoid function, which causes the convergence of the network to be slow, contributes to its fast learning ability. The authors applied FPM to some basic problems, and the results indicated the high potential of this model.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors propose a fuzzy partition model (FPM), a multilayer feedforward perceptron-like network. The most important point of FPM is that it has multiple-input/output units which are upper compatible with the threshold units commonly used in the backpropagation (BP) model. The number of outputs is called the degree N of that unit, and an FPM unit can classify input patterns into N categories. Because the sum total of the output values of an FPM unit is always one, Kullback divergence is adopted as a network measure to derive its learning rule. The fact that the learning rule does not include the derivative of a sigmoid function, which causes the convergence of the network to be slow, contributes to its fast learning ability. The authors applied FPM to some basic problems, and the results indicated the high potential of this model.<>
具有多分区单元的网络
作者提出了一种模糊划分模型(FPM),一种多层前馈类感知器网络。FPM最重要的一点是它具有多个输入/输出单元,这些单元与反向传播(BP)模型中常用的阈值单元高度兼容。输出的数量称为该单元的度N, FPM单元可以将输入模式分为N类。由于FPM单元的输出值总和总是1,因此采用Kullback散度作为网络度量来推导其学习规则。由于学习规则中不包含sigmoid函数的导数,使得网络的收敛速度较慢,这也使得网络具有较快的学习能力。作者将FPM应用于一些基本问题,结果表明该模型具有很高的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信