Multiclass and Multilabel Classification of Human Cell Components Using Transfer Learning of InceptionV3 Model

Yadavendra, S. Chand
{"title":"Multiclass and Multilabel Classification of Human Cell Components Using Transfer Learning of InceptionV3 Model","authors":"Yadavendra, S. Chand","doi":"10.1109/ICCCIS51004.2021.9397165","DOIUrl":null,"url":null,"abstract":"Here we are finding 28 different predefined proteins of human cells with a transfer learning of inceptionV3 as the base model. This base model is pre-trained on the imagenet dataset. We add some layers in the base model and trained resulting models for our dataset and find the human cell proteins in a given sample. For this, we used a human cell atlas dataset provided by the Human Protein Atlas (HPA) community. This is a multilabel and multiclass problem in which one sample image can have more than one protein. We trained the given model on the training dataset by using the best hyperparameter of deep learning then tested the trained model on test data. We have found the efficiency of the resulting model in terms of precision, recall, f1-score, micro average, macro average, weighted average, sampled average, and accuracy. The accuracy of the given resulted model is 95.96%. On the basis of the above parameters, we analyzed the performance of the mentioned model, hence we choose the best hyperparameter according to the performance matrices in case of multi labels and multiclass problems.","PeriodicalId":316752,"journal":{"name":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS51004.2021.9397165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Here we are finding 28 different predefined proteins of human cells with a transfer learning of inceptionV3 as the base model. This base model is pre-trained on the imagenet dataset. We add some layers in the base model and trained resulting models for our dataset and find the human cell proteins in a given sample. For this, we used a human cell atlas dataset provided by the Human Protein Atlas (HPA) community. This is a multilabel and multiclass problem in which one sample image can have more than one protein. We trained the given model on the training dataset by using the best hyperparameter of deep learning then tested the trained model on test data. We have found the efficiency of the resulting model in terms of precision, recall, f1-score, micro average, macro average, weighted average, sampled average, and accuracy. The accuracy of the given resulted model is 95.96%. On the basis of the above parameters, we analyzed the performance of the mentioned model, hence we choose the best hyperparameter according to the performance matrices in case of multi labels and multiclass problems.
基于InceptionV3模型迁移学习的人体细胞成分多类多标签分类
在这里,我们发现28种不同的人类细胞的预定义蛋白与转移学习的inceptionV3为基础模型。这个基本模型是在imagenet数据集上进行预训练的。我们在基本模型中添加一些层,并为我们的数据集训练结果模型,并在给定样本中找到人类细胞蛋白质。为此,我们使用了人类蛋白质图谱(HPA)社区提供的人类细胞图谱数据集。这是一个多标签和多类别的问题,其中一个样本图像可以包含多个蛋白质。我们使用深度学习的最佳超参数在训练数据集上训练给定的模型,然后在测试数据上对训练好的模型进行测试。我们发现所得模型在精度、召回率、f1-score、微观平均、宏观平均、加权平均、抽样平均和准确性方面的效率。所得模型的准确率为95.96%。在上述参数的基础上,我们分析了上述模型的性能,从而在多标签、多类问题下,根据性能矩阵选择最佳的超参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信