Design issues in electrostatic microplate actuators: Device stability and post pull-in behaviour

E. Bertarelli, R. Ardito, A. Greiner, J. Korvink, A. Corigliano
{"title":"Design issues in electrostatic microplate actuators: Device stability and post pull-in behaviour","authors":"E. Bertarelli, R. Ardito, A. Greiner, J. Korvink, A. Corigliano","doi":"10.1109/ESIME.2011.5765843","DOIUrl":null,"url":null,"abstract":"In this work, electrostatic stability of microplate actuators is investigated. In particular, the possibility to improve device stability by adopting charge control is discussed. The parallel plate actuator is first introduced as case study. Then, a one degree-of freedom model is obtained for microplate electromechanics. The parasitic capacitance arising from the non-uniform device deformation is evaluated. This practically leads to a reduced capacitance feedback with respect to parallel plate systems. Consequently, a limited stabilizing effect of charge drive can be obtained. The analysis of microplate behaviour is completed by the evaluation of adhesion (stiction) when eventually pull-in is reached.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, electrostatic stability of microplate actuators is investigated. In particular, the possibility to improve device stability by adopting charge control is discussed. The parallel plate actuator is first introduced as case study. Then, a one degree-of freedom model is obtained for microplate electromechanics. The parasitic capacitance arising from the non-uniform device deformation is evaluated. This practically leads to a reduced capacitance feedback with respect to parallel plate systems. Consequently, a limited stabilizing effect of charge drive can be obtained. The analysis of microplate behaviour is completed by the evaluation of adhesion (stiction) when eventually pull-in is reached.
静电微孔板致动器的设计问题:设备稳定性和后拉入行为
本文研究了微孔板致动器的静电稳定性。特别讨论了采用电荷控制来提高器件稳定性的可能性。本文首先以并联板作动器为例进行了介绍。在此基础上,建立了微孔板机电力学的一自由度模型。计算了器件不均匀变形引起的寄生电容。这实际上导致了相对于平行板系统的电容反馈减小。因此,电荷驱动可以获得有限的稳定效果。微孔板行为的分析是通过评估最终拉入时的粘附(粘连)来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信