Forecasting Partial Discharges of Cable Joints using Weather data

Raymon van Dinter, S. Rieken, P. Leduc, Gerdtinus Netten, B. Tekinerdogan, C. Catal
{"title":"Forecasting Partial Discharges of Cable Joints using Weather data","authors":"Raymon van Dinter, S. Rieken, P. Leduc, Gerdtinus Netten, B. Tekinerdogan, C. Catal","doi":"10.1109/cai54212.2023.00021","DOIUrl":null,"url":null,"abstract":"Partial discharge (PD) is a symptom of a weak spot in an underground power cable. Additionally, environmental influences are an important factor in cable degradation. We show that PD in underground cable joints can be successfully forecasted using linear machine learning models leveraging historical PDs and weather data. This has potential applications in estimating the remaining life of cable joints, as we can extend the prediction horizon for predictive maintenance models, such as survival analysis models. Additionally, the model error can be monitored for anomaly detection. This study was conducted in collaboration with Alliander, an electricity and gas distribution system operator in the Netherlands.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Partial discharge (PD) is a symptom of a weak spot in an underground power cable. Additionally, environmental influences are an important factor in cable degradation. We show that PD in underground cable joints can be successfully forecasted using linear machine learning models leveraging historical PDs and weather data. This has potential applications in estimating the remaining life of cable joints, as we can extend the prediction horizon for predictive maintenance models, such as survival analysis models. Additionally, the model error can be monitored for anomaly detection. This study was conducted in collaboration with Alliander, an electricity and gas distribution system operator in the Netherlands.
利用天气数据预测电缆接头的局部放电
局部放电(PD)是地下电缆薄弱环节的一种症状。此外,环境影响是电缆退化的重要因素。我们表明,使用利用历史PD和天气数据的线性机器学习模型可以成功预测地下电缆接头的PD。这在估计电缆接头的剩余寿命方面具有潜在的应用,因为我们可以扩展预测维护模型的预测范围,例如生存分析模型。此外,可以监视模型误差以检测异常。这项研究是与荷兰的电力和天然气分配系统运营商Alliander合作进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信