Acceleration of Image Stitching Using Embedded Graphics Processing Unit

Karam M. Abughalieh, O. Bataineh, Shadi G. Alawneh
{"title":"Acceleration of Image Stitching Using Embedded Graphics Processing Unit","authors":"Karam M. Abughalieh, O. Bataineh, Shadi G. Alawneh","doi":"10.1109/EIT.2018.8500187","DOIUrl":null,"url":null,"abstract":"Feature detection and matching are powerful techniques used in many computer vision applications such as image registration, tracking, and object detection. In this paper, a parallel implementation for invariant feature point based image warping and stitching using embedded GPU platform is implemented. The proposed solution is a mix of OpenCV functions and Unified Device Architecture (CUDA) kernels. CUDA kernel is used to perform the image translation tasks based on the translation info obtained by OpenCV. A sequential code is developed first to be used as a reference for the speed up calculations. The experimental results show a speed up of 100x and more using our GPU code with large images.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Feature detection and matching are powerful techniques used in many computer vision applications such as image registration, tracking, and object detection. In this paper, a parallel implementation for invariant feature point based image warping and stitching using embedded GPU platform is implemented. The proposed solution is a mix of OpenCV functions and Unified Device Architecture (CUDA) kernels. CUDA kernel is used to perform the image translation tasks based on the translation info obtained by OpenCV. A sequential code is developed first to be used as a reference for the speed up calculations. The experimental results show a speed up of 100x and more using our GPU code with large images.
利用嵌入式图形处理器加速图像拼接
特征检测和匹配是许多计算机视觉应用中使用的强大技术,如图像配准,跟踪和目标检测。本文提出了一种基于嵌入式GPU平台的基于不变特征点的图像扭曲与拼接的并行实现方法。提出的解决方案是OpenCV功能和统一设备架构(CUDA)内核的混合。CUDA内核基于OpenCV获取的转换信息执行图像转换任务。首先开发一个顺序代码,作为加速计算的参考。实验结果表明,使用我们的GPU代码处理大图像的速度提高了100倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信