Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet

Vasily Zyuzin, Porshnev Sergey, A. Mukhtarov, T. Chumarnaya, O. Solovyova, A. Bobkova, V. Myasnikov
{"title":"Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet","authors":"Vasily Zyuzin, Porshnev Sergey, A. Mukhtarov, T. Chumarnaya, O. Solovyova, A. Bobkova, V. Myasnikov","doi":"10.1109/USBEREIT.2018.8384554","DOIUrl":null,"url":null,"abstract":"Nowadays ultrasound studies of the heart, also called echocardiography (EchoCG), are widespread in modern cardiology. One of the most important steps in estimating the health of the heart is the tracking and segmentation of the left ventricular (LV) endocardial border from EchoCG, which is used for measuring the ejection fraction and assessing the regional wall motion [1]. The disadvantage of these methods is the necessity to apply image processing manually or in a semi-automatic mode, which requires special knowledge and skills. As a result, the issue of an automatic tracking and segmentation of the LV on EchoCG-images is an actual and practical problem. The capabilities of the fully trained model of the convolutional neural network Unet for automatic identification of the LV region are explored in this paper. The obtained accuracy of LV segmentation is up to 92.3%, which suggests the expediency of using Unet for automatic identification of the LV endocardial border on ultrasound images.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Nowadays ultrasound studies of the heart, also called echocardiography (EchoCG), are widespread in modern cardiology. One of the most important steps in estimating the health of the heart is the tracking and segmentation of the left ventricular (LV) endocardial border from EchoCG, which is used for measuring the ejection fraction and assessing the regional wall motion [1]. The disadvantage of these methods is the necessity to apply image processing manually or in a semi-automatic mode, which requires special knowledge and skills. As a result, the issue of an automatic tracking and segmentation of the LV on EchoCG-images is an actual and practical problem. The capabilities of the fully trained model of the convolutional neural network Unet for automatic identification of the LV region are explored in this paper. The obtained accuracy of LV segmentation is up to 92.3%, which suggests the expediency of using Unet for automatic identification of the LV endocardial border on ultrasound images.
利用卷积神经网络Unet在二维超声图像上识别左心室心内膜边界
如今,心脏的超声研究,也称为超声心动图(EchoCG),在现代心脏病学中广泛应用。估计心脏健康状况的最重要步骤之一是EchoCG对左心室心内膜边界的跟踪和分割,用于测量射血分数和评估区域壁运动[1]。这些方法的缺点是必须手动或半自动模式应用图像处理,这需要特殊的知识和技能。因此,超声心动图上LV的自动跟踪与分割问题是一个非常现实的问题。本文探讨了卷积神经网络Unet的全训练模型在LV区域自动识别中的能力。所获得的左室分割准确率达92.3%,说明利用Unet对超声图像上的左室心内膜边界进行自动识别的便利性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信