On the Feasibility of Automating Stock Market Manipulation

Carter Yagemann, S. Chung, Erkam Uzun, Sai Ragam, Brendan Saltaformaggio, Wenke Lee
{"title":"On the Feasibility of Automating Stock Market Manipulation","authors":"Carter Yagemann, S. Chung, Erkam Uzun, Sai Ragam, Brendan Saltaformaggio, Wenke Lee","doi":"10.1145/3427228.3427241","DOIUrl":null,"url":null,"abstract":"This work presents the first findings on the feasibility of using botnets to automate stock market manipulation. Our analysis incorporates data gathered from SEC case files, security surveys of online brokerages, and dark web marketplace data. We address several technical challenges, including how to adapt existing techniques for automation, the cost of hijacking brokerage accounts, avoiding detection, and more. We consolidate our findings into a working proof-of-concept, man-in-the-browser malware, Bot2Stock, capable of controlling victim email and brokerage accounts to commit fraud. We evaluate our bots and protocol using agent-based market simulations, where we find that a 1.5% ratio of bots to benign traders yields a 2.8% return on investment (ROI) per attack. Given the short duration of each attack (< 1 minute), achieving this ratio is trivial, requiring only 4 bots to target stocks like IBM. 1,000 bots, cumulatively gathered over 1 year, can turn $100,000 into $1,022,000, placing Bot2Stock on par with existing botnet scams.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3427228.3427241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work presents the first findings on the feasibility of using botnets to automate stock market manipulation. Our analysis incorporates data gathered from SEC case files, security surveys of online brokerages, and dark web marketplace data. We address several technical challenges, including how to adapt existing techniques for automation, the cost of hijacking brokerage accounts, avoiding detection, and more. We consolidate our findings into a working proof-of-concept, man-in-the-browser malware, Bot2Stock, capable of controlling victim email and brokerage accounts to commit fraud. We evaluate our bots and protocol using agent-based market simulations, where we find that a 1.5% ratio of bots to benign traders yields a 2.8% return on investment (ROI) per attack. Given the short duration of each attack (< 1 minute), achieving this ratio is trivial, requiring only 4 bots to target stocks like IBM. 1,000 bots, cumulatively gathered over 1 year, can turn $100,000 into $1,022,000, placing Bot2Stock on par with existing botnet scams.
论股票市场操纵自动化的可行性
这项工作提出了使用僵尸网络自动化股票市场操纵的可行性的第一个发现。我们的分析结合了从美国证券交易委员会案件档案、在线券商安全调查和暗网市场数据收集的数据。我们解决了几个技术挑战,包括如何使现有技术适应自动化、劫持经纪账户的成本、避免检测等等。我们将我们的发现整合到一个有效的概念验证,浏览器中的人恶意软件Bot2Stock,能够控制受害者的电子邮件和经纪账户进行欺诈。我们使用基于代理的市场模拟来评估我们的机器人和协议,我们发现机器人与良性交易者的比例为1.5%,每次攻击的投资回报率(ROI)为2.8%。考虑到每次攻击的持续时间很短(< 1分钟),实现这个比例是微不足道的,只需要4个机器人就可以瞄准IBM等股票。1000个僵尸程序,在一年的时间里累积起来,可以把10万美元变成102.2万美元,使Bot2Stock与现有的僵尸网络骗局不相上下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信