Robust Adaptive Iterative Learning Control for Nonlinear Systems with Non-Repetitive Variables

W. Zhou, Baobin Liu
{"title":"Robust Adaptive Iterative Learning Control for Nonlinear Systems with Non-Repetitive Variables","authors":"W. Zhou, Baobin Liu","doi":"10.1109/ICCSE.2019.8845341","DOIUrl":null,"url":null,"abstract":"In this work, the temporally and iteratively varying problems in iterative learning control for a class of nonlinear multiple input multiple output systems is discussed. Time-iteration-varying variables are generated by high-order internal models. Reference trajectories and system initial states are bounded and vary randomly in iteration domain. Then an operator is applied to update the estimation matrix for the whole uncertainties including non-repetitive parameters and time-varying disturbances. With the proposed adaptive iterative learning control technique, estimation error is bounded and tracking error converges to zero asymptotically. The effectiveness of the proposed control is verified through simulation study.","PeriodicalId":351346,"journal":{"name":"2019 14th International Conference on Computer Science & Education (ICCSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2019.8845341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the temporally and iteratively varying problems in iterative learning control for a class of nonlinear multiple input multiple output systems is discussed. Time-iteration-varying variables are generated by high-order internal models. Reference trajectories and system initial states are bounded and vary randomly in iteration domain. Then an operator is applied to update the estimation matrix for the whole uncertainties including non-repetitive parameters and time-varying disturbances. With the proposed adaptive iterative learning control technique, estimation error is bounded and tracking error converges to zero asymptotically. The effectiveness of the proposed control is verified through simulation study.
非重复变量非线性系统的鲁棒自适应迭代学习控制
本文讨论了一类非线性多输入多输出系统的迭代学习控制中的时间和迭代变化问题。时间迭代变量由高阶内部模型生成。参考轨迹和系统初始状态是有界的,在迭代域中随机变化。然后利用算子对包括非重复参数和时变扰动在内的全不确定性估计矩阵进行更新。采用自适应迭代学习控制技术,估计误差有界,跟踪误差渐近收敛于零。通过仿真研究验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信