Minimum redundancy maximum relevancy versus score-based methods for learning Markov boundaries

Silvia Acid, L. M. D. Campos, Moisés Fernández
{"title":"Minimum redundancy maximum relevancy versus score-based methods for learning Markov boundaries","authors":"Silvia Acid, L. M. D. Campos, Moisés Fernández","doi":"10.1109/ISDA.2011.6121724","DOIUrl":null,"url":null,"abstract":"Feature subset selection is increasingly becoming an important preprocessing step within the field of automatic classification. This is due to the fact that the domain problems currently considered contain a high number of variables, and some kind of dimensionality reduction becomes necessary, in order to make the classification task approachable. In this paper we make an experimental comparison between a state-of-the-art method for feature selection, namely minimum Redundancy Maximum Relevance, and a recently proposed method for learning Markov boundaries based on searching for Bayesian network structures in constrained spaces using standard scoring functions.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Feature subset selection is increasingly becoming an important preprocessing step within the field of automatic classification. This is due to the fact that the domain problems currently considered contain a high number of variables, and some kind of dimensionality reduction becomes necessary, in order to make the classification task approachable. In this paper we make an experimental comparison between a state-of-the-art method for feature selection, namely minimum Redundancy Maximum Relevance, and a recently proposed method for learning Markov boundaries based on searching for Bayesian network structures in constrained spaces using standard scoring functions.
最小冗余最大相关性与基于分数的马尔可夫边界学习方法
特征子集选择日益成为自动分类领域中重要的预处理步骤。这是因为目前考虑的领域问题包含大量变量,为了使分类任务易于接近,需要进行某种降维。在本文中,我们对最先进的特征选择方法(即最小冗余最大相关性)和最近提出的基于使用标准评分函数在约束空间中搜索贝叶斯网络结构的学习马尔可夫边界的方法进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信