Double Loop Neural Fractional-Order Terminal Sliding Mode Control of MEMS Gyroscope

Zhe Wang, J. Fei
{"title":"Double Loop Neural Fractional-Order Terminal Sliding Mode Control of MEMS Gyroscope","authors":"Zhe Wang, J. Fei","doi":"10.1109/ICA-SYMP50206.2021.9358437","DOIUrl":null,"url":null,"abstract":"A fractional-order nonsingular terminal sliding mode controller is proposed for a MEMS gyroscope using a double loop recurrent neural network approximator. For higher accuracy and faster convergence, the fractional-order (FO) calculus is employed into the nonsingular terminal sliding mode controller with additional degree of freedom. For the system robustness, the neural network is designed to approximate the lumped uncertainty. The inner recurrent loop and external recurrent loop is employed to provide feedback signal to obtain satisfactory approximation accuracy. Furthermore, the Lyapunov stability theorem is employed to verify the asymptotical stability and convergence of system. Simulations for a MEMS gyroscope are studied to exhibit the superiority of the proposed control strategy.","PeriodicalId":147047,"journal":{"name":"2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICA-SYMP50206.2021.9358437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A fractional-order nonsingular terminal sliding mode controller is proposed for a MEMS gyroscope using a double loop recurrent neural network approximator. For higher accuracy and faster convergence, the fractional-order (FO) calculus is employed into the nonsingular terminal sliding mode controller with additional degree of freedom. For the system robustness, the neural network is designed to approximate the lumped uncertainty. The inner recurrent loop and external recurrent loop is employed to provide feedback signal to obtain satisfactory approximation accuracy. Furthermore, the Lyapunov stability theorem is employed to verify the asymptotical stability and convergence of system. Simulations for a MEMS gyroscope are studied to exhibit the superiority of the proposed control strategy.
MEMS陀螺仪的双回路神经分数阶末端滑模控制
提出了一种基于双回路递归神经网络逼近器的MEMS陀螺仪分数阶非奇异终端滑模控制器。为了获得更高的精度和更快的收敛速度,将分数阶(FO)演算应用于具有附加自由度的非奇异末端滑模控制器中。为了提高系统的鲁棒性,设计了神经网络来逼近集总不确定性。采用内循环和外循环提供反馈信号,以获得满意的近似精度。进一步,利用Lyapunov稳定性定理验证了系统的渐近稳定性和收敛性。通过对微机电系统陀螺仪的仿真研究,证明了所提控制策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信