Tiling Framework for Heterogeneous Computing of Matrix based Tiled Algorithms

Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter
{"title":"Tiling Framework for Heterogeneous Computing of Matrix based Tiled Algorithms","authors":"Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter","doi":"10.1145/3587278.3595642","DOIUrl":null,"url":null,"abstract":"Tiling matrix operations can improve the load balancing and performance of applications on heterogeneous computing resources. Writing a tile-based algorithm for each operation with a traditional, hand-tuned tiling approach that uses for loops in C/C++ is cumbersome and error prone. Moreover, it must enable and support the heterogeneous memory management of data objects and also explore architecture-supported, native, tiled-data transfer APIs instead of copying the tiled data to continuous memory before the data transfer. The tiling framework provides a tiled data structure for heterogeneous memory mapping and parameterization to a heterogeneous task specification API. We have integrated our tiled framework into MatRIS (Math kernels library using IRIS). IRIS is a heterogeneous run-time framework with a heterogeneous programming model, memory model, and task execution model. Experiments reveal that the tiled framework for BLAS operations has improved the programmability of tiled BLAS and improved performance by ~20% when compared against the traditional method that copies the data to continuous memory locations for heterogeneous computing.","PeriodicalId":169613,"journal":{"name":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587278.3595642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tiling matrix operations can improve the load balancing and performance of applications on heterogeneous computing resources. Writing a tile-based algorithm for each operation with a traditional, hand-tuned tiling approach that uses for loops in C/C++ is cumbersome and error prone. Moreover, it must enable and support the heterogeneous memory management of data objects and also explore architecture-supported, native, tiled-data transfer APIs instead of copying the tiled data to continuous memory before the data transfer. The tiling framework provides a tiled data structure for heterogeneous memory mapping and parameterization to a heterogeneous task specification API. We have integrated our tiled framework into MatRIS (Math kernels library using IRIS). IRIS is a heterogeneous run-time framework with a heterogeneous programming model, memory model, and task execution model. Experiments reveal that the tiled framework for BLAS operations has improved the programmability of tiled BLAS and improved performance by ~20% when compared against the traditional method that copies the data to continuous memory locations for heterogeneous computing.
基于矩阵的平铺算法异构计算的平铺框架
平铺矩阵操作可以改善应用程序在异构计算资源上的负载平衡和性能。使用C/ c++中for循环的传统手工调优平铺方法为每个操作编写基于平铺的算法非常麻烦,而且容易出错。此外,它必须启用和支持数据对象的异构内存管理,还必须探索架构支持的本机平铺数据传输api,而不是在数据传输之前将平铺数据复制到连续内存中。平铺框架为异构内存映射和异构任务规范API的参数化提供了平铺数据结构。我们已经将平铺框架集成到MatRIS(使用IRIS的数学内核库)中。IRIS是一个异构运行时框架,具有异构编程模型、内存模型和任务执行模型。实验表明,与传统的将数据复制到连续存储位置进行异构计算的方法相比,用于BLAS操作的平铺框架提高了BLAS的可编程性,性能提高了约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信