Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter
{"title":"Tiling Framework for Heterogeneous Computing of Matrix based Tiled Algorithms","authors":"Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Liu, J. Vetter","doi":"10.1145/3587278.3595642","DOIUrl":null,"url":null,"abstract":"Tiling matrix operations can improve the load balancing and performance of applications on heterogeneous computing resources. Writing a tile-based algorithm for each operation with a traditional, hand-tuned tiling approach that uses for loops in C/C++ is cumbersome and error prone. Moreover, it must enable and support the heterogeneous memory management of data objects and also explore architecture-supported, native, tiled-data transfer APIs instead of copying the tiled data to continuous memory before the data transfer. The tiling framework provides a tiled data structure for heterogeneous memory mapping and parameterization to a heterogeneous task specification API. We have integrated our tiled framework into MatRIS (Math kernels library using IRIS). IRIS is a heterogeneous run-time framework with a heterogeneous programming model, memory model, and task execution model. Experiments reveal that the tiled framework for BLAS operations has improved the programmability of tiled BLAS and improved performance by ~20% when compared against the traditional method that copies the data to continuous memory locations for heterogeneous computing.","PeriodicalId":169613,"journal":{"name":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Workshop on Extreme Heterogeneity Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587278.3595642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tiling matrix operations can improve the load balancing and performance of applications on heterogeneous computing resources. Writing a tile-based algorithm for each operation with a traditional, hand-tuned tiling approach that uses for loops in C/C++ is cumbersome and error prone. Moreover, it must enable and support the heterogeneous memory management of data objects and also explore architecture-supported, native, tiled-data transfer APIs instead of copying the tiled data to continuous memory before the data transfer. The tiling framework provides a tiled data structure for heterogeneous memory mapping and parameterization to a heterogeneous task specification API. We have integrated our tiled framework into MatRIS (Math kernels library using IRIS). IRIS is a heterogeneous run-time framework with a heterogeneous programming model, memory model, and task execution model. Experiments reveal that the tiled framework for BLAS operations has improved the programmability of tiled BLAS and improved performance by ~20% when compared against the traditional method that copies the data to continuous memory locations for heterogeneous computing.