Unsupervised Deep Variational Model for Multivariate Sensor Anomaly Detection

Mulugeta Weldezgina Asres, G. Cummings, P. Parygin, A. Khukhunaishvili, M. Toms, A. Campbell, S. Cooper, D. Yu, J. Dittmann, C. Omlin
{"title":"Unsupervised Deep Variational Model for Multivariate Sensor Anomaly Detection","authors":"Mulugeta Weldezgina Asres, G. Cummings, P. Parygin, A. Khukhunaishvili, M. Toms, A. Campbell, S. Cooper, D. Yu, J. Dittmann, C. Omlin","doi":"10.1109/PIC53636.2021.9687034","DOIUrl":null,"url":null,"abstract":"The ever-increasing detector complexity at CERN triggers a call for an increasing level of automation. Since the quality of collected physics data hinges on the quality of the detector components at the time of data-taking, the rapid identification and resolution of detector system anomalies will result in a better amount of high-quality particle data. Therefore, this study proposes CGVAE, a data-driven unsupervised anomaly detection using a deep learning model, for detector system monitoring from multivariate time series sensor data. The CGVAE model is composed of a variational autoencoder with convolutional and gated recurrent unit networks for fast localized feature extraction, long temporal characteristics capturing, and descriptive representation learning. Furthermore, to mitigate signal reconstruction overfitting on anomalous patterns, the CGVAE employs encoded latent feature- and reconstruction-based metrics for anomaly detection. Moreover, the model integrates feature attribution algorithms to explain the contribution of the input sensors to the detected anomalies. The experimental evaluation on large sensor data sets of the Hadron Calorimeter of the CMS experiment demonstrates the efficacy of the proposed model in capturing temporal anomalies.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"1995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ever-increasing detector complexity at CERN triggers a call for an increasing level of automation. Since the quality of collected physics data hinges on the quality of the detector components at the time of data-taking, the rapid identification and resolution of detector system anomalies will result in a better amount of high-quality particle data. Therefore, this study proposes CGVAE, a data-driven unsupervised anomaly detection using a deep learning model, for detector system monitoring from multivariate time series sensor data. The CGVAE model is composed of a variational autoencoder with convolutional and gated recurrent unit networks for fast localized feature extraction, long temporal characteristics capturing, and descriptive representation learning. Furthermore, to mitigate signal reconstruction overfitting on anomalous patterns, the CGVAE employs encoded latent feature- and reconstruction-based metrics for anomaly detection. Moreover, the model integrates feature attribution algorithms to explain the contribution of the input sensors to the detected anomalies. The experimental evaluation on large sensor data sets of the Hadron Calorimeter of the CMS experiment demonstrates the efficacy of the proposed model in capturing temporal anomalies.
多变量传感器异常检测的无监督深度变分模型
欧洲核子研究中心不断增加的探测器复杂性引发了对提高自动化水平的呼吁。由于采集到的物理数据的质量取决于采集数据时探测器组件的质量,因此探测器系统异常的快速识别和解决将带来更多的高质量粒子数据。因此,本研究提出了一种基于深度学习模型的数据驱动无监督异常检测CGVAE,用于多变量时间序列传感器数据的检测器系统监控。CGVAE模型由一个带有卷积和门控循环单元网络的变分自编码器组成,用于快速局部特征提取、长时间特征捕获和描述性表征学习。此外,为了减轻信号重构对异常模式的过拟合,CGVAE采用基于编码潜在特征和重构的指标进行异常检测。此外,该模型集成了特征属性算法来解释输入传感器对检测到的异常的贡献。通过对CMS实验中强子量热计大型传感器数据集的实验评估,验证了该模型在捕获时间异常方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信