Monotonically decreasing eigenvalue for edge-sharpening diffusion

Wenhua Ma
{"title":"Monotonically decreasing eigenvalue for edge-sharpening diffusion","authors":"Wenhua Ma","doi":"10.1109/CSAE.2011.5952698","DOIUrl":null,"url":null,"abstract":"Anisotropic diffusion is classified by the eigenvalue of the Hessian matrix associated with the diffusivity function into two categories: one incapable of edge-sharpening and the other capable of selective edge sharpening. A third class is proposed: the eigenvalue starts with a small value and decreases monotonically with image gradient magnitude so that the stronger the edge is, the more it is sharpened. Two such examples are given and one is found to consistently produce the best PSNR at all simulated noise levels.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anisotropic diffusion is classified by the eigenvalue of the Hessian matrix associated with the diffusivity function into two categories: one incapable of edge-sharpening and the other capable of selective edge sharpening. A third class is proposed: the eigenvalue starts with a small value and decreases monotonically with image gradient magnitude so that the stronger the edge is, the more it is sharpened. Two such examples are given and one is found to consistently produce the best PSNR at all simulated noise levels.
边缘锐化扩散的单调递减特征值
根据与扩散函数相关联的Hessian矩阵的特征值,将各向异性扩散分为不能锐化边缘和能选择性锐化边缘两类。提出了第三类特征值:特征值从一个较小的值开始,随着图像梯度幅度的增大而单调减小,使边缘越强越锐化。给出了两个这样的例子,其中一个例子在所有模拟噪声水平下都能产生最佳的PSNR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信