Super-resolution via a patch-based sparse algorithm

Maryam Dashti, S. S. Ghidary, Tahmineh Hosseinian, Mohammadreza Pourfard, K. Faez
{"title":"Super-resolution via a patch-based sparse algorithm","authors":"Maryam Dashti, S. S. Ghidary, Tahmineh Hosseinian, Mohammadreza Pourfard, K. Faez","doi":"10.1109/AISP.2015.7123496","DOIUrl":null,"url":null,"abstract":"The Sparsity concept has been widely used in image processing applications. In this paper, an approach for super-resolution has been proposed which uses sparse transform. This approach has mixed the inpainting concept with zooming via a sparse representation. A dictionary is being trained from a low-resolution image and then a zoomed version of this low resolution image will use that dictionary in a few iterations to fill the undefined image pixels. Experimental results confirm the strength of this algorithm against the other interpolation algorithms.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Sparsity concept has been widely used in image processing applications. In this paper, an approach for super-resolution has been proposed which uses sparse transform. This approach has mixed the inpainting concept with zooming via a sparse representation. A dictionary is being trained from a low-resolution image and then a zoomed version of this low resolution image will use that dictionary in a few iterations to fill the undefined image pixels. Experimental results confirm the strength of this algorithm against the other interpolation algorithms.
通过基于补丁的稀疏算法实现超分辨率
稀疏性概念在图像处理应用中得到了广泛的应用。本文提出了一种利用稀疏变换实现超分辨的方法。这种方法通过稀疏表示混合了绘画概念和缩放。从低分辨率图像中训练字典,然后该低分辨率图像的缩放版本将在几次迭代中使用该字典来填充未定义的图像像素。实验结果证实了该算法相对于其他插值算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信