Lossless compression of DNA microarray images

Yong Zhang, Rahul Parthe, D. Adjeroh
{"title":"Lossless compression of DNA microarray images","authors":"Yong Zhang, Rahul Parthe, D. Adjeroh","doi":"10.1109/CSBW.2005.85","DOIUrl":null,"url":null,"abstract":"Microarray experiments are characterized by a massive amount of data, usually in the form of an image. Based on the nature of microarray images, we consider the microarray in terms of its structure and statistics. Based on the microarray image model, we propose a context-based method for lossless compression of microarray images using prediction by partial approximate matching (PPAM). In synchronization experiments, the raw data consists of two channel microarray images. The correlation between these two channel microarray images is explored in order to improve the compression performance. Our results show that, the proposed approach produces a better compression result when compared with results from the best-known microarray compression algorithm.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Microarray experiments are characterized by a massive amount of data, usually in the form of an image. Based on the nature of microarray images, we consider the microarray in terms of its structure and statistics. Based on the microarray image model, we propose a context-based method for lossless compression of microarray images using prediction by partial approximate matching (PPAM). In synchronization experiments, the raw data consists of two channel microarray images. The correlation between these two channel microarray images is explored in order to improve the compression performance. Our results show that, the proposed approach produces a better compression result when compared with results from the best-known microarray compression algorithm.
DNA微阵列图像的无损压缩
微阵列实验的特点是数据量大,通常以图像的形式。基于微阵列图像的性质,我们从其结构和统计角度考虑微阵列。基于微阵列图像模型,我们提出了一种基于上下文的微阵列图像无损压缩方法,该方法采用部分近似匹配预测(PPAM)。在同步实验中,原始数据由两个通道微阵列图像组成。探讨了这两个通道微阵列图像之间的相关性,以提高压缩性能。我们的结果表明,与最著名的微阵列压缩算法的结果相比,所提出的方法产生了更好的压缩结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信