Investigating GF-5 Hyperspectral and GF-1 Multispectral Data Fusion Methods for Multitemporal Change Analysis

Weiwei Sun, Kai Ren, Gang Yang, Xiangchao Meng, Yinnian Liu
{"title":"Investigating GF-5 Hyperspectral and GF-1 Multispectral Data Fusion Methods for Multitemporal Change Analysis","authors":"Weiwei Sun, Kai Ren, Gang Yang, Xiangchao Meng, Yinnian Liu","doi":"10.1109/Multi-Temp.2019.8866908","DOIUrl":null,"url":null,"abstract":"Multitemporal change analysis is one of the essential purposes for discovering knowledge from various remote sensing terrestrial earth observation techniques. Particularly, the China Gaofen-5 (GF-5) hyperspectral imager provides a new data source for multitemporal change analysis. Its 330 bands, 60 km swath width and 5–10 nm spectrum resolutions make it captures subtle changes in spectrum responses of ground objects across different images. Unfortunately, its 30 spatial resolution still hinders its accurate geospatial location in some specific applications. Therefore, we explore state-of-the-art data fusion methods and seek an appropriate fusing method of GF-5 hyperspectral and GF-1 multispectral data to benefit multitemporal change analysis. We utilize four image fusion methods and implement six evaluation criteria to holistically evaluate the performance of different methods. Experimental results on three datasets of Taihu Lake and Poyang Lake in China show that the Modulation transfer functions-generalized Laplacian pyramid (MTF-GLP) has smaller spectral distortion, better spatial fidelity and requires moderate computational time than the other three methods. It accordingly can be a good choice for fusing GF-5 and GF-1 remote sensing data in both classification and multitemporal change analysis.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multitemporal change analysis is one of the essential purposes for discovering knowledge from various remote sensing terrestrial earth observation techniques. Particularly, the China Gaofen-5 (GF-5) hyperspectral imager provides a new data source for multitemporal change analysis. Its 330 bands, 60 km swath width and 5–10 nm spectrum resolutions make it captures subtle changes in spectrum responses of ground objects across different images. Unfortunately, its 30 spatial resolution still hinders its accurate geospatial location in some specific applications. Therefore, we explore state-of-the-art data fusion methods and seek an appropriate fusing method of GF-5 hyperspectral and GF-1 multispectral data to benefit multitemporal change analysis. We utilize four image fusion methods and implement six evaluation criteria to holistically evaluate the performance of different methods. Experimental results on three datasets of Taihu Lake and Poyang Lake in China show that the Modulation transfer functions-generalized Laplacian pyramid (MTF-GLP) has smaller spectral distortion, better spatial fidelity and requires moderate computational time than the other three methods. It accordingly can be a good choice for fusing GF-5 and GF-1 remote sensing data in both classification and multitemporal change analysis.
研究GF-5高光谱和GF-1多光谱数据融合方法在多时间变化分析中的应用
多时相变化分析是从各种遥感对地观测技术中发现知识的重要目的之一。特别是中国高分5号(GF-5)高光谱成像仪为多时间变化分析提供了新的数据来源。它的330个波段,60公里的宽度和5-10纳米的光谱分辨率使它能够捕捉到不同图像中地面物体光谱响应的细微变化。遗憾的是,在某些特定应用中,它的空间分辨率仍然阻碍了其精确的地理空间定位。因此,我们探索最新的数据融合方法,寻求适合GF-5高光谱和GF-1多光谱数据的融合方法,以有利于多时间变化分析。我们采用了四种图像融合方法,并实施了六个评价标准,对不同方法的性能进行了整体评价。在太湖和鄱阳湖3个数据集上的实验结果表明,与其他3种方法相比,调制传递函数-广义拉普拉斯金字塔(MTF-GLP)具有更小的光谱失真、更好的空间保真度和适度的计算时间。因此,无论是分类还是多时相变化分析,它都可以成为GF-5和GF-1遥感数据融合的良好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信