{"title":"Necessary and sufficient conditions for robust absolute stability of time-varying nonlinear continuous-time systems","authors":"A. Molchanov, Derong Liu","doi":"10.1109/CDC.2001.980066","DOIUrl":null,"url":null,"abstract":"Establishes results for the robust absolute stability of a class of nonlinear continuous-time systems with time-varying matrix uncertainties of polyhedral type and multiple time-varying sector nonlinearities. By using the variational method and the Lyapunov second method, criteria for robust absolute stability are obtained in different forms for the given class of systems. Specifically, the parametric classes of Lyapunov functions are determined which define the necessary and sufficient conditions of robust absolute stability. The piecewise linear Lyapunov functions of the infinity vector norm type are applied to derive an algebraic criterion for robust absolute stability in the form of solvability conditions of a set of matrix equations.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Establishes results for the robust absolute stability of a class of nonlinear continuous-time systems with time-varying matrix uncertainties of polyhedral type and multiple time-varying sector nonlinearities. By using the variational method and the Lyapunov second method, criteria for robust absolute stability are obtained in different forms for the given class of systems. Specifically, the parametric classes of Lyapunov functions are determined which define the necessary and sufficient conditions of robust absolute stability. The piecewise linear Lyapunov functions of the infinity vector norm type are applied to derive an algebraic criterion for robust absolute stability in the form of solvability conditions of a set of matrix equations.