A Recurrent Neural Model for Temporal Information Extraction

Parul Patel
{"title":"A Recurrent Neural Model for Temporal Information Extraction","authors":"Parul Patel","doi":"10.5121/cseij.2022.12103","DOIUrl":null,"url":null,"abstract":"Temporal information extraction is an emerging area of information retrieval. Understanding temporal nature of a document is very important in application like answering time sensitive queries, doing temporal analysis of a document, document clustering etc. Lot of research is done in temporal reasoning using rule based or machine learning based approaches. In this paper, deep learning is used to extract temporal expressions from the text documents. Bi-directional Long Short term Memory Recurrent Neural Network (Bi-LSTM RNN) is used to extract temporal expression from the text. Gold standard datasets are used for training and evaluation. Performance of the proposed system is compared with existing system.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"35 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal information extraction is an emerging area of information retrieval. Understanding temporal nature of a document is very important in application like answering time sensitive queries, doing temporal analysis of a document, document clustering etc. Lot of research is done in temporal reasoning using rule based or machine learning based approaches. In this paper, deep learning is used to extract temporal expressions from the text documents. Bi-directional Long Short term Memory Recurrent Neural Network (Bi-LSTM RNN) is used to extract temporal expression from the text. Gold standard datasets are used for training and evaluation. Performance of the proposed system is compared with existing system.
时间信息提取的递归神经模型
时间信息提取是信息检索的一个新兴领域。理解文档的时态性质在诸如回答时间敏感查询、对文档进行时态分析、文档聚类等应用中非常重要。很多研究都是使用基于规则或基于机器学习的方法来进行时间推理的。本文采用深度学习技术从文本文档中提取时态表达式。采用双向长短期记忆递归神经网络(Bi-LSTM RNN)从文本中提取时间表达式。金标准数据集用于训练和评估。将该系统的性能与现有系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信