An IMPLY-based Memristive Multiplier for Computing-in-Memory Systems with Weight-Stationary CNN Acceleration

Wenhui Liang, Jiarui Xu, Yuansheng Zhao, Zixuan Shen, Guoyi Yu, Yuhui He, Chao Wang
{"title":"An IMPLY-based Memristive Multiplier for Computing-in-Memory Systems with Weight-Stationary CNN Acceleration","authors":"Wenhui Liang, Jiarui Xu, Yuansheng Zhao, Zixuan Shen, Guoyi Yu, Yuhui He, Chao Wang","doi":"10.1109/ICTA56932.2022.9962994","DOIUrl":null,"url":null,"abstract":"Adders and multipliers based on memristive Material Implication (IMPLY) logic are widely used in primary building blocks of Arithmetic Logic Unit (ALU). To solve the issue that the existing IMPLY-based multipliers cannot protect the input operands, this paper presents a novel data non-destructive memristive IMPLY-based semi-parallel multiplier for Computing-in-Memory (CIM) systems, by assigning function-specific memristors for data-protection and introducing additional switches for higher parallelism. Simulation results show that the proposed multiplier can achieve 30% faster than conventional semi-parallel design and 9.1 % less memristors against the state-of-art semi-serial design for 4-bit multiplication, while preventing the input weight from destruction as required by CNN weight reuse.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9962994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adders and multipliers based on memristive Material Implication (IMPLY) logic are widely used in primary building blocks of Arithmetic Logic Unit (ALU). To solve the issue that the existing IMPLY-based multipliers cannot protect the input operands, this paper presents a novel data non-destructive memristive IMPLY-based semi-parallel multiplier for Computing-in-Memory (CIM) systems, by assigning function-specific memristors for data-protection and introducing additional switches for higher parallelism. Simulation results show that the proposed multiplier can achieve 30% faster than conventional semi-parallel design and 9.1 % less memristors against the state-of-art semi-serial design for 4-bit multiplication, while preventing the input weight from destruction as required by CNN weight reuse.
一种基于隐式记忆乘法器的权重稳定CNN加速系统
基于记忆物质蕴涵(IMPLY)逻辑的加法器和乘法器被广泛应用于算术逻辑单元(ALU)的主要组成部分。为了解决现有基于impl的乘法器不能保护输入操作数的问题,本文提出了一种用于内存计算(CIM)系统的基于impl的数据非破坏性忆阻半并行乘法器,通过分配特定功能的忆阻器来保护数据,并引入额外的开关以提高并行性。仿真结果表明,该乘法器比传统的半并行设计快30%,比目前最先进的半串行设计少9.1%的忆阻器用于4位乘法,同时防止了CNN权值重用所要求的输入权值破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信