Augmentation of Local Government FAQs using Community-based Question-answering Data

Yohei Seki, Masaki Oguni, Sumio Fujita
{"title":"Augmentation of Local Government FAQs using Community-based Question-answering Data","authors":"Yohei Seki, Masaki Oguni, Sumio Fujita","doi":"10.1145/3428757.3429137","DOIUrl":null,"url":null,"abstract":"To reduce the cost of administrative services, many local governments provide a frequently asked questions (FAQ) page on their websites that lists the questions received from local inhabitants with their official responses. The number of Q&A items posted on the FAQ page, however, will vary depending on the local government. To address this issue, we propose a method for augmenting local government FAQs by using a community-based Q&A (cQA) service. We also propose a new FAQ augmentation task to identify the regional dependence of Q&A to achieve the goal mentioned above. In our experiments, we fine-tuned the bidirectional encoder representations from transformers (BERT) model for this task, using a labeled local-government FAQ dataset. We found that the regional dependence of Q&As can be identified with high accuracy by using both the question and the answer as clues and with fine tuning for the deeper layers in BERT.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce the cost of administrative services, many local governments provide a frequently asked questions (FAQ) page on their websites that lists the questions received from local inhabitants with their official responses. The number of Q&A items posted on the FAQ page, however, will vary depending on the local government. To address this issue, we propose a method for augmenting local government FAQs by using a community-based Q&A (cQA) service. We also propose a new FAQ augmentation task to identify the regional dependence of Q&A to achieve the goal mentioned above. In our experiments, we fine-tuned the bidirectional encoder representations from transformers (BERT) model for this task, using a labeled local-government FAQ dataset. We found that the regional dependence of Q&As can be identified with high accuracy by using both the question and the answer as clues and with fine tuning for the deeper layers in BERT.
利用基于社区的问答数据增加地方政府常见问题
为了降低行政服务的成本,许多地方政府在他们的网站上提供了一个常见问题(FAQ)页面,列出了从当地居民那里收到的问题以及他们的官方回复。但是,在“常见问题解答”页面上的提问数量会根据地方自治团体的不同而有所不同。为了解决这个问题,我们提出了一种通过使用基于社区的问答(cQA)服务来增加地方政府常见问题的方法。为了实现上述目标,我们还提出了一个新的FAQ增强任务来识别问答的区域依赖性。在我们的实验中,我们使用标记的地方政府FAQ数据集,对来自变压器(BERT)模型的双向编码器表示进行了微调。我们发现,通过将问题和答案作为线索,并对BERT中的更深层进行微调,可以高精度地识别问答的区域依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信