Improved Channel Estimation Using Wavelet Denoising for OFDM and OFDMA Systems

Xue Wang, Linjing Zhao, Jiandong Li
{"title":"Improved Channel Estimation Using Wavelet Denoising for OFDM and OFDMA Systems","authors":"Xue Wang, Linjing Zhao, Jiandong Li","doi":"10.1109/WAINA.2009.51","DOIUrl":null,"url":null,"abstract":"Least Square (LS) channel estimation has been widely used in OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiplexing Access) systems. However, it's rather sensitive to Guassian white noise. In this paper, we present a new algorithm which deals with the LS estimation results through wavelet shrinkage denoising based on Stein’s unbiased risk estimation (SURE) criterion. This algorithm can effectively remove the influence of noise in the channels and minimize the estimation risk. Consequently, the sensitivity to noise of LS estimation is diminished. Simulation in the scenario of IEEE802.16 downlink transmission shows that the proposed algorithm has significant advantage over LS and modified LS estimators.","PeriodicalId":159465,"journal":{"name":"2009 International Conference on Advanced Information Networking and Applications Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2009.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Least Square (LS) channel estimation has been widely used in OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiplexing Access) systems. However, it's rather sensitive to Guassian white noise. In this paper, we present a new algorithm which deals with the LS estimation results through wavelet shrinkage denoising based on Stein’s unbiased risk estimation (SURE) criterion. This algorithm can effectively remove the influence of noise in the channels and minimize the estimation risk. Consequently, the sensitivity to noise of LS estimation is diminished. Simulation in the scenario of IEEE802.16 downlink transmission shows that the proposed algorithm has significant advantage over LS and modified LS estimators.
基于小波降噪的OFDM和OFDMA信道估计改进
最小二乘信道估计在正交频分复用(OFDM)和正交频分复用(OFDMA)系统中得到了广泛的应用。然而,它对高斯白噪声相当敏感。本文提出了一种基于Stein无偏风险估计准则的小波收缩去噪处理LS估计结果的新算法。该算法可以有效地去除信道中噪声的影响,使估计风险最小化。因此,LS估计对噪声的敏感性降低。在IEEE802.16下行传输场景下的仿真表明,该算法比LS估计和改进的LS估计具有显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信