A Novel Fuzzy Model Identification Approach Based on FCM and Gaussian Membership Function

Yaxue Ren, Jinfeng Lv, Fucai Liu
{"title":"A Novel Fuzzy Model Identification Approach Based on FCM and Gaussian Membership Function","authors":"Yaxue Ren, Jinfeng Lv, Fucai Liu","doi":"10.23919/CCC50068.2020.9188699","DOIUrl":null,"url":null,"abstract":"To solve the problem of fuzzy identification of nonlinear systems, a novel fuzzy identification method based on fuzzy c-means clustering (FCM) algorithm and Gaussian function is proposed. Firstly, fuzzy clustering algorithm is used to divide the input space to obtain the clustering center, then the clustering center is used as the gaussian function center to determine the membership function to obtain the premise parameters of the fuzzy model, and the conclusion parameters of the fuzzy model are identified by recursive least squares (RLS). Finally, three simulation examples are given to verify the effectiveness of the proposed method in identifying T-S fuzzy model.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9188699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To solve the problem of fuzzy identification of nonlinear systems, a novel fuzzy identification method based on fuzzy c-means clustering (FCM) algorithm and Gaussian function is proposed. Firstly, fuzzy clustering algorithm is used to divide the input space to obtain the clustering center, then the clustering center is used as the gaussian function center to determine the membership function to obtain the premise parameters of the fuzzy model, and the conclusion parameters of the fuzzy model are identified by recursive least squares (RLS). Finally, three simulation examples are given to verify the effectiveness of the proposed method in identifying T-S fuzzy model.
一种基于FCM和高斯隶属函数的模糊模型识别新方法
为了解决非线性系统的模糊辨识问题,提出了一种基于模糊c均值聚类(FCM)算法和高斯函数的模糊辨识方法。首先利用模糊聚类算法对输入空间进行划分得到聚类中心,然后将聚类中心作为高斯函数中心确定隶属函数,得到模糊模型的前提参数,最后利用递推最小二乘(RLS)对模糊模型的结论参数进行识别。最后,给出了三个仿真实例,验证了该方法在T-S模糊模型识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信