Goemans-Williamson MAXCUT approximation algorithm on Loihi

Bradley H. Theilman, J. Aimone
{"title":"Goemans-Williamson MAXCUT approximation algorithm on Loihi","authors":"Bradley H. Theilman, J. Aimone","doi":"10.1145/3584954.3584955","DOIUrl":null,"url":null,"abstract":"Approximation algorithms for computationally complex problems are of significant importance in computing as they provide computational guarantees of obtaining practically useful results for otherwise computationally intractable problems. The demonstration of implementing formal approximation algorithms on spiking neuromorphic hardware is a critical step in establishing that neuromorphic computing can offer cost-effective solutions to significant optimization problems while retaining important computational guarantees on the quality of solutions. Here, we demonstrate that the Loihi platform is capable of effectively implementing the Goemans-Williamson (GW) approximation algorithm for MAXCUT, an NP-hard problem that has applications ranging from VLSI design to network analysis. We show that a Loihi implementation of the approximation step of the GW algorithm obtains equivalent maximum cuts of graphs as conventional algorithms, and we describe how different aspects of architecture precision impacts the algorithm performance.","PeriodicalId":375527,"journal":{"name":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584954.3584955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Approximation algorithms for computationally complex problems are of significant importance in computing as they provide computational guarantees of obtaining practically useful results for otherwise computationally intractable problems. The demonstration of implementing formal approximation algorithms on spiking neuromorphic hardware is a critical step in establishing that neuromorphic computing can offer cost-effective solutions to significant optimization problems while retaining important computational guarantees on the quality of solutions. Here, we demonstrate that the Loihi platform is capable of effectively implementing the Goemans-Williamson (GW) approximation algorithm for MAXCUT, an NP-hard problem that has applications ranging from VLSI design to network analysis. We show that a Loihi implementation of the approximation step of the GW algorithm obtains equivalent maximum cuts of graphs as conventional algorithms, and we describe how different aspects of architecture precision impacts the algorithm performance.
Loihi上的Goemans-Williamson MAXCUT近似算法
计算复杂问题的近似算法在计算中具有重要意义,因为它们为计算棘手问题获得实际有用的结果提供了计算保证。在尖峰神经形态硬件上实现形式近似算法的演示是建立神经形态计算可以为重大优化问题提供成本效益解决方案的关键一步,同时保留对解决方案质量的重要计算保证。在这里,我们证明了Loihi平台能够有效地实现MAXCUT的Goemans-Williamson (GW)近似算法,MAXCUT是一个np困难问题,其应用范围从VLSI设计到网络分析。我们展示了GW算法的近似步骤的Loihi实现与传统算法一样获得等价的图的最大切割,并且我们描述了架构精度的不同方面如何影响算法性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信