Qualitative Study of a Class of Quartic Differential System with an Unstable Node

R. Allaoua, R. Cheurfa, A. Bendjeddou
{"title":"Qualitative Study of a Class of Quartic Differential System with an Unstable Node","authors":"R. Allaoua, R. Cheurfa, A. Bendjeddou","doi":"10.1109/ICRAMI52622.2021.9585912","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a class of quartic differential system from the integrability and the existence of limit cycle. We show that this class is integrable and we give the explicit expression of first integral. After this, we prove, under suitable conditions on the parameters, that this class admits a non-algebraic limit cycle surrounding an unstable node. Concerning the singular points at infinity, we show that there is only one singular point. As an illustration, a phase portrait is drawn at the end of this paper.Mathematics Subject Classification: 34A05, 34C05, 34C07, 34C25.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a class of quartic differential system from the integrability and the existence of limit cycle. We show that this class is integrable and we give the explicit expression of first integral. After this, we prove, under suitable conditions on the parameters, that this class admits a non-algebraic limit cycle surrounding an unstable node. Concerning the singular points at infinity, we show that there is only one singular point. As an illustration, a phase portrait is drawn at the end of this paper.Mathematics Subject Classification: 34A05, 34C05, 34C07, 34C25.
一类具有不稳定节点的四次微分系统的定性研究
本文从极限环的可积性和存在性出发,引入了一类四次微分系统。证明了该类是可积的,并给出了第一个积分的显式表达式。在此基础上,在适当的参数条件下,证明了该类存在围绕不稳定节点的非代数极限环。对于无穷远处的奇异点,我们证明了只有一个奇异点。作为说明,本文最后绘制了相图。数学学科分类:34A05, 34C05, 34C07, 34C25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信