A Simple 3D-Only Evolutionary Bipedal System with Albatross Morphology for Increased Performance

Ben Jackson, A. Channon
{"title":"A Simple 3D-Only Evolutionary Bipedal System with Albatross Morphology for Increased Performance","authors":"Ben Jackson, A. Channon","doi":"10.1109/SSCI47803.2020.9308500","DOIUrl":null,"url":null,"abstract":"Bipedal walking is a difficult behaviour to encode into an evolutionary neural network, particularly in three-dimensional environments. Agents must be constantly maintaining balance alongside their primary objectives. Here we re-implement a simple evolutionary bipedal system, achieving high fitness and stepping gaits in 3D without the preliminary 2D bootstrapping process required by the original work. This high-performing system, with its deliberately simple neurocontroller, provides an excellent foundation for the community to use for the evolution or learning of more complex behaviours in bipeds. We also investigate the effects of modified morphology with the system, significantly improving agent fitness by evolving networks alongside morphologies resembling a baby albatross. The agents with albatross morphologies travel up to three times further than default agents. We then test incrementally evolving agent morphology via the simultaneous evolution of a separate morphological genotype. We initialised this genotype either alongside a high-performing controller or from a completely random point in both fitness landscapes. Agents evolved from this random initialisation travel up to four times further than default agents. One randomly initialised incremental morphology also achieves gaits with significantly higher upper body and swing knee controller input weights than the default.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bipedal walking is a difficult behaviour to encode into an evolutionary neural network, particularly in three-dimensional environments. Agents must be constantly maintaining balance alongside their primary objectives. Here we re-implement a simple evolutionary bipedal system, achieving high fitness and stepping gaits in 3D without the preliminary 2D bootstrapping process required by the original work. This high-performing system, with its deliberately simple neurocontroller, provides an excellent foundation for the community to use for the evolution or learning of more complex behaviours in bipeds. We also investigate the effects of modified morphology with the system, significantly improving agent fitness by evolving networks alongside morphologies resembling a baby albatross. The agents with albatross morphologies travel up to three times further than default agents. We then test incrementally evolving agent morphology via the simultaneous evolution of a separate morphological genotype. We initialised this genotype either alongside a high-performing controller or from a completely random point in both fitness landscapes. Agents evolved from this random initialisation travel up to four times further than default agents. One randomly initialised incremental morphology also achieves gaits with significantly higher upper body and swing knee controller input weights than the default.
一个简单的3d进化双足系统与信天翁形态提高性能
双足行走是一种难以编码进进化神经网络的行为,尤其是在三维环境中。代理人必须不断地在他们的主要目标之间保持平衡。在这里,我们重新实现了一个简单的进化双足系统,在3D中实现了高适应度和步姿,而无需原始工作所需的初步2D自举过程。这个高性能的系统,加上它特意设计的简单神经控制器,为两足动物进化或学习更复杂的行为提供了良好的基础。我们还研究了修改形态对系统的影响,通过进化网络和类似小信天翁的形态来显着提高代理适应度。具有信天翁形态的代理比默认代理的运行距离最远可达三倍。然后,我们通过同时进化一个单独的形态基因型来测试逐渐进化的试剂形态。我们要么与高性能控制器一起初始化该基因型,要么从两个适应度景观中的完全随机点初始化该基因型。从这种随机初始化演化而来的代理比默认代理的移动距离最远可达四倍。一个随机初始化的增量形态也实现了明显高于默认值的上半身和摆动膝盖控制器输入权重的步态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信