Utilization of orthogonal higher-order coherence functions for cubic Volterra model identification

S. Im, S.B. Kim, E. Powers
{"title":"Utilization of orthogonal higher-order coherence functions for cubic Volterra model identification","authors":"S. Im, S.B. Kim, E. Powers","doi":"10.1109/HOST.1993.264585","DOIUrl":null,"url":null,"abstract":"Presents an approach to frequency-domain cubic Volterra kernel identification where the kernel has a limited number of significant frequency-domain coefficients (which are complex quantities). The orthogonal higher-order coherence functions are utilized to select the most significant frequency-domain Volterra kernel coefficients to be included in the cubic Volterra model. The practicality and feasibility of this approach is demonstrated by utilizing it to model actual physical nonlinear systems given experimental input-output data from such systems.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Presents an approach to frequency-domain cubic Volterra kernel identification where the kernel has a limited number of significant frequency-domain coefficients (which are complex quantities). The orthogonal higher-order coherence functions are utilized to select the most significant frequency-domain Volterra kernel coefficients to be included in the cubic Volterra model. The practicality and feasibility of this approach is demonstrated by utilizing it to model actual physical nonlinear systems given experimental input-output data from such systems.<>
利用正交高阶相干函数进行三次Volterra模型辨识
提出了一种频率域三次Volterra核识别方法,其中核具有有限数量的有效频率域系数(这是复数)。利用正交高阶相干函数选择最显著的频域Volterra核系数,将其包含在三次Volterra模型中。利用该方法对实际的物理非线性系统进行建模,给出了这些系统的实验输入输出数据,证明了该方法的实用性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信