UTtoKB: a Model for Semantic Relation Extraction from Unstructured Text

Mustafa Nabeel Salim, Ban Shareef Mustafa
{"title":"UTtoKB: a Model for Semantic Relation Extraction from Unstructured Text","authors":"Mustafa Nabeel Salim, Ban Shareef Mustafa","doi":"10.1109/ISMSIT52890.2021.9604538","DOIUrl":null,"url":null,"abstract":"In this paper, a model prototype called UTtoKB has been built. It extracts semantic relationships from an unstructured text based on ontology. The model is a pipeline steps based on natural language processing (NLP) tasks and tools like Coreference Resolution (CR), Named Entity Recognition (NER), Semantic Role Labeling (SRL), and Part of Speech (PoS) Tagging. WordNet is the tool used to measure similarities between entities to convert them into ontology concepts and properties. The model works fine in specific domains, while performance degrades in other domains due to the instability of WordNet performance in finding semantic similarities.","PeriodicalId":120997,"journal":{"name":"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT52890.2021.9604538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a model prototype called UTtoKB has been built. It extracts semantic relationships from an unstructured text based on ontology. The model is a pipeline steps based on natural language processing (NLP) tasks and tools like Coreference Resolution (CR), Named Entity Recognition (NER), Semantic Role Labeling (SRL), and Part of Speech (PoS) Tagging. WordNet is the tool used to measure similarities between entities to convert them into ontology concepts and properties. The model works fine in specific domains, while performance degrades in other domains due to the instability of WordNet performance in finding semantic similarities.
UTtoKB:非结构化文本语义关系抽取模型
本文建立了一个名为UTtoKB的模型原型。它基于本体从非结构化文本中提取语义关系。该模型是一个基于自然语言处理(NLP)任务和工具的流水线步骤,如共同参考解析(CR)、命名实体识别(NER)、语义角色标记(SRL)和词性标记(PoS)。WordNet是用来度量实体之间的相似性,并将它们转换为本体概念和属性的工具。该模型在特定领域工作良好,而由于WordNet在寻找语义相似性方面的性能不稳定,在其他领域的性能会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信