Kernel Induced Rough c-means clustering for lymphocyte image segmentation

Subrajeet Mohapatra, D. Patra, Sunil Kumar, S. Satpathy
{"title":"Kernel Induced Rough c-means clustering for lymphocyte image segmentation","authors":"Subrajeet Mohapatra, D. Patra, Sunil Kumar, S. Satpathy","doi":"10.1109/IHCI.2012.6481865","DOIUrl":null,"url":null,"abstract":"Blood microscopic image segmentation is a fundamental tool for automated diagnosis of hematological disorders. In particular, lymphoblast image segmentation acts as the foundation for all image based leukemia diagnostic system. Precision in image segmentation is a necessary condition for improving the diagnostic accuracy in automated cytology. Since the diagnostic information content of the segmented images are plentiful, suitable segmentation routines need to be developed for better disease recognition. In this paper, Kernel Induced Rough C-means (KIRCM) clustering algorithm is introduced for the segmentation of human lymphocyte images. Rough C-means clustering (RCM) is performed in higher dimensional feature space to obtain improved segmentation accuracy and to facilitate automated Acute Lymphoblastic Leukemia (ALL) detection. Comparative analysis reveals that use of rough sets in kernel space clustering for leukocyte segmentation gives the proposed scheme an edge over existing schemes.","PeriodicalId":107245,"journal":{"name":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHCI.2012.6481865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Blood microscopic image segmentation is a fundamental tool for automated diagnosis of hematological disorders. In particular, lymphoblast image segmentation acts as the foundation for all image based leukemia diagnostic system. Precision in image segmentation is a necessary condition for improving the diagnostic accuracy in automated cytology. Since the diagnostic information content of the segmented images are plentiful, suitable segmentation routines need to be developed for better disease recognition. In this paper, Kernel Induced Rough C-means (KIRCM) clustering algorithm is introduced for the segmentation of human lymphocyte images. Rough C-means clustering (RCM) is performed in higher dimensional feature space to obtain improved segmentation accuracy and to facilitate automated Acute Lymphoblastic Leukemia (ALL) detection. Comparative analysis reveals that use of rough sets in kernel space clustering for leukocyte segmentation gives the proposed scheme an edge over existing schemes.
核诱导的粗糙c均值聚类用于淋巴细胞图像分割
血液显微图像分割是血液学疾病自动诊断的基本工具。其中,淋巴母细胞图像分割是所有基于图像的白血病诊断系统的基础。图像分割精度是提高细胞学自动化诊断精度的必要条件。由于分割图像的诊断信息内容丰富,为了更好地识别疾病,需要开发合适的分割程序。本文将核诱导粗糙c均值(KIRCM)聚类算法引入到人体淋巴细胞图像分割中。粗糙c均值聚类(RCM)在高维特征空间中进行,以获得更高的分割精度,并促进急性淋巴细胞白血病(ALL)的自动检测。对比分析表明,在核空间聚类中使用粗糙集进行白细胞分割使所提出的方案比现有方案具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信