Detect Chinese Cyber Bullying by Analyzing User Behaviors and Language Patterns

Peidong Zhang, Yue Gao, S. Chen
{"title":"Detect Chinese Cyber Bullying by Analyzing User Behaviors and Language Patterns","authors":"Peidong Zhang, Yue Gao, S. Chen","doi":"10.1109/ISASS.2019.8757714","DOIUrl":null,"url":null,"abstract":"With the rapid growth of social media, people are more aware of cyber bullying on the internet. The most important aspect for preventing cyber bullying is to detect the abusive content. In this paper, we build a Long Short-Term MemoryNeural Network-Deterministic Finite Automaton (LND) model which considers not only the language content, but also the user’s characteristics and historical speech on social network. Due to the lack of labeled content, we utilize Douban’s reviewers data by analyzing speech patterns with polarized emotions. Then the learned model is applied to analyze Chinese cyber bully behaviors on Weibo. As a result, the accuracy of detecting cyber bullying increases from 89% (sensitive lexicon filtering method) to 95% by considering user’s behavior features and language emotional polarity scores. Our model is capable of analyze real celebrities’ Weibo webpages and assists prevention of cyber bullying on social media.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the rapid growth of social media, people are more aware of cyber bullying on the internet. The most important aspect for preventing cyber bullying is to detect the abusive content. In this paper, we build a Long Short-Term MemoryNeural Network-Deterministic Finite Automaton (LND) model which considers not only the language content, but also the user’s characteristics and historical speech on social network. Due to the lack of labeled content, we utilize Douban’s reviewers data by analyzing speech patterns with polarized emotions. Then the learned model is applied to analyze Chinese cyber bully behaviors on Weibo. As a result, the accuracy of detecting cyber bullying increases from 89% (sensitive lexicon filtering method) to 95% by considering user’s behavior features and language emotional polarity scores. Our model is capable of analyze real celebrities’ Weibo webpages and assists prevention of cyber bullying on social media.
通过分析用户行为和语言模式来检测中国网络欺凌行为
随着社交媒体的快速发展,人们对网络欺凌的意识越来越强。防止网络欺凌最重要的方面是发现滥用内容。在本文中,我们建立了一个长短期记忆神经网络-确定性有限自动机(LND)模型,该模型不仅考虑了语言内容,而且考虑了社交网络上的用户特征和历史语音。由于缺乏标记内容,我们利用豆瓣的评论者数据来分析带有两极分化情绪的语音模式。然后将学习到的模型应用于分析中国微博上的网络欺凌行为。我们的模型能够分析真实名人的微博页面,帮助预防社交媒体上的网络欺凌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信