A machine learning approach for the classification of cardiac arrhythmia

P. Shimpi, S. Shah, Maitri Shroff, Anand Godbole
{"title":"A machine learning approach for the classification of cardiac arrhythmia","authors":"P. Shimpi, S. Shah, Maitri Shroff, Anand Godbole","doi":"10.1109/ICCMC.2017.8282537","DOIUrl":null,"url":null,"abstract":"Rapid advancements in technology have facilitated early diagnosis of diseases in the medical sector. One of the most prevalent medical conditions that demands early diagnosis is cardiac arrhythmia. ECG signals can be used to classify and detect the type of cardiac arrhythmia. This paper introduces a novel approach to classify the ECG data into one of the sixteen types of arrhythmia using Machine Learning. The proposed method uses the UCI Machine Learning Repository [1] dataset of cardiac arrhythmia to train the system on 279 different attributes. In order to increase the accuracy, the method uses Principal Component Analysis for dimensionality reduction, Bag of Visual Words approach for clustering and compares different classification algorithms like Support Vector Machine, Random Forest, Logistic Regression and K-Nearest Neighbor algorithms, thus choosing the most accurate algorithm, Support Vector Machine.","PeriodicalId":163288,"journal":{"name":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2017.8282537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Rapid advancements in technology have facilitated early diagnosis of diseases in the medical sector. One of the most prevalent medical conditions that demands early diagnosis is cardiac arrhythmia. ECG signals can be used to classify and detect the type of cardiac arrhythmia. This paper introduces a novel approach to classify the ECG data into one of the sixteen types of arrhythmia using Machine Learning. The proposed method uses the UCI Machine Learning Repository [1] dataset of cardiac arrhythmia to train the system on 279 different attributes. In order to increase the accuracy, the method uses Principal Component Analysis for dimensionality reduction, Bag of Visual Words approach for clustering and compares different classification algorithms like Support Vector Machine, Random Forest, Logistic Regression and K-Nearest Neighbor algorithms, thus choosing the most accurate algorithm, Support Vector Machine.
心律失常分类的机器学习方法
技术的迅速进步促进了医疗部门对疾病的早期诊断。需要早期诊断的最普遍的医疗条件之一是心律失常。心电信号可以用来对心律失常的类型进行分类和检测。本文介绍了一种利用机器学习将心电数据分类为16种心律失常之一的新方法。该方法使用UCI机器学习库[1]心律失常数据集对系统进行279种不同属性的训练。为了提高准确率,该方法采用主成分分析法进行降维,采用Bag of Visual Words方法进行聚类,并比较了支持向量机、随机森林、Logistic回归和k近邻算法等不同的分类算法,最终选择了准确率最高的支持向量机算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信