An nO(1/ϵ) Approximation Scheme For The Minimum Dominating Set In Unit Disk Graphs

Jittat Fakcharoenphol, Pattara Sukprasert
{"title":"An nO(1/ϵ) Approximation Scheme For The Minimum Dominating Set In Unit Disk Graphs","authors":"Jittat Fakcharoenphol, Pattara Sukprasert","doi":"10.1109/JCSSE.2018.8457372","DOIUrl":null,"url":null,"abstract":"We present an $n^{O(1/\\epsilon )}$ PTAS for minimum dominating set problem in unit disk graphs. Our approach gives an asymptotic improvement over the best known [Nieberg and Hurink WAOA2005], which runs in $n^{O(1/\\epsilon \\log 1/\\epsilon )}$, under a more strict (but typical) assumption that the underlying geometric structure is known, i.e., the locations of all unit disks are specified. Our key ingredient is an improved dynamic programming algorithm that depends exponentially on a more essential 1-dimensional “width” of the problem.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"1993 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present an $n^{O(1/\epsilon )}$ PTAS for minimum dominating set problem in unit disk graphs. Our approach gives an asymptotic improvement over the best known [Nieberg and Hurink WAOA2005], which runs in $n^{O(1/\epsilon \log 1/\epsilon )}$, under a more strict (but typical) assumption that the underlying geometric structure is known, i.e., the locations of all unit disks are specified. Our key ingredient is an improved dynamic programming algorithm that depends exponentially on a more essential 1-dimensional “width” of the problem.
单位磁盘图最小支配集的nO(1/ λ)逼近方案
提出了一个求解单位磁盘图最小支配集问题的$n^{O(1/\epsilon )}$ PTAS。我们的方法给出了最著名的[Nieberg和Hurink WAOA2005]的渐进改进,该方法在$n^{O(1/\epsilon \log 1/\epsilon )}$上运行,在更严格(但典型)的假设下,底层几何结构是已知的,即所有单元磁盘的位置都是指定的。我们的关键成分是一种改进的动态规划算法,它以指数方式依赖于问题更基本的一维“宽度”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信