Multi-Target localization in asynchronous MIMO radars using sparse sensing

S. Sedighi, R. B. S. Mysore, S. Maleki, B. Ottersten
{"title":"Multi-Target localization in asynchronous MIMO radars using sparse sensing","authors":"S. Sedighi, R. B. S. Mysore, S. Maleki, B. Ottersten","doi":"10.1109/CAMSAP.2017.8313198","DOIUrl":null,"url":null,"abstract":"Multi-target localization, warranted in emerging applications like autonomous driving, requires targets to be perfectly detected in the distributed nodes with accurate range measurements. This implies that high range resolution is crucial in distributed localization in the considered scenario. This work proposes a new framework for multi-target localization, addressing the demand for the high range resolution in automotive applications without increasing the required bandwidth. In particular, it employs sparse stepped frequency waveform and infers the target ranges by exploiting sparsity in target scene. The range measurements are then sent to a fusion center where direction of arrival estimation is undertaken. Numerical results illustrate the impact of range resolution on multi-target localization and the performance improvement arising from the proposed algorithm in such scenarios.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-target localization, warranted in emerging applications like autonomous driving, requires targets to be perfectly detected in the distributed nodes with accurate range measurements. This implies that high range resolution is crucial in distributed localization in the considered scenario. This work proposes a new framework for multi-target localization, addressing the demand for the high range resolution in automotive applications without increasing the required bandwidth. In particular, it employs sparse stepped frequency waveform and infers the target ranges by exploiting sparsity in target scene. The range measurements are then sent to a fusion center where direction of arrival estimation is undertaken. Numerical results illustrate the impact of range resolution on multi-target localization and the performance improvement arising from the proposed algorithm in such scenarios.
基于稀疏感知的异步MIMO雷达多目标定位
在自动驾驶等新兴应用中,多目标定位需要在分布式节点中完美地检测目标,并进行精确的距离测量。这意味着在所考虑的场景中,高距离分辨率对于分布式定位至关重要。这项工作提出了一个新的多目标定位框架,在不增加所需带宽的情况下解决了汽车应用中对高距离分辨率的需求。该方法采用稀疏阶跃频率波形,利用目标场景的稀疏性来推断目标距离。然后将距离测量值发送到融合中心,在那里进行到达方向估计。数值结果说明了距离分辨率对多目标定位的影响以及在这种情况下所提出的算法所带来的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信