3D user-perspective, voxel-based estimation of visual focus of attention in dynamic meeting scenarios

M. Voit, R. Stiefelhagen
{"title":"3D user-perspective, voxel-based estimation of visual focus of attention in dynamic meeting scenarios","authors":"M. Voit, R. Stiefelhagen","doi":"10.1145/1891903.1891966","DOIUrl":null,"url":null,"abstract":"In this paper we present a new framework for the online estimation of people's visual focus of attention from their head poses in dynamic meeting scenarios. We describe a voxel based approach to reconstruct the scene composition from an observer's perspective, in order to integrate occlusion handling and visibility verification. The observer's perspective is thereby simulated with live head pose tracking over four far-field views from the room's upper corners. We integrate motion and speech activity as further scene observations in a Bayesian Surprise framework to model prior attractors of attention within the situation's context. As evaluations on a dedicated dataset with 10 meeting videos show, this allows us to predict a meeting participant's focus of attention correctly in up to 72.2% of all frames.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper we present a new framework for the online estimation of people's visual focus of attention from their head poses in dynamic meeting scenarios. We describe a voxel based approach to reconstruct the scene composition from an observer's perspective, in order to integrate occlusion handling and visibility verification. The observer's perspective is thereby simulated with live head pose tracking over four far-field views from the room's upper corners. We integrate motion and speech activity as further scene observations in a Bayesian Surprise framework to model prior attractors of attention within the situation's context. As evaluations on a dedicated dataset with 10 meeting videos show, this allows us to predict a meeting participant's focus of attention correctly in up to 72.2% of all frames.
三维用户视角,动态会议场景中基于体素的视觉焦点估计
本文提出了一种基于动态会议场景中头部姿态在线估计人们视觉注意焦点的新框架。我们描述了一种基于体素的方法,从观察者的角度重建场景组成,以整合遮挡处理和可见性验证。因此,观察者的视角是模拟的,实时头部姿态跟踪从房间的上角四个远场视图。在贝叶斯惊喜框架中,我们将动作和言语活动作为进一步的场景观察整合在一起,以模拟情境背景下的注意力吸引因素。正如对包含10个会议视频的专用数据集的评估所显示的那样,这使我们能够在所有帧中正确预测会议参与者的注意力焦点,准确率高达72.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信