Hand Segmentation and Joint Localization in Fluorescence Optical Imaging

Richard Fiebelkorn, S. Kupper, E. Gedat, Rachel Escueta, Felix Rothe
{"title":"Hand Segmentation and Joint Localization in Fluorescence Optical Imaging","authors":"Richard Fiebelkorn, S. Kupper, E. Gedat, Rachel Escueta, Felix Rothe","doi":"10.1109/IECBES54088.2022.10079311","DOIUrl":null,"url":null,"abstract":"An essential step in the automated analysis of fluorescence optical imaging (FOI) sequence data for rheumatic diseases of the hands lies in the precise detection of the hands and joint positions. We demonstrate the application and derivation of a hierarchical algorithm that enables a precise segmentation of each patient’s hands, relying on geometrical constraints and highly-adaptive thresholding-like approaches. The improvements made compared to reference solutions are demonstrated. In particular, it is shown that—based on the reliable segmentation of the hand—one can robustly detect the joint positions in the hand by morphological constraints based on biological principles. Ways to further improve on our findings are suggested, and the applicability of current state-of-the-art instrumental machinery is demonstrated.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An essential step in the automated analysis of fluorescence optical imaging (FOI) sequence data for rheumatic diseases of the hands lies in the precise detection of the hands and joint positions. We demonstrate the application and derivation of a hierarchical algorithm that enables a precise segmentation of each patient’s hands, relying on geometrical constraints and highly-adaptive thresholding-like approaches. The improvements made compared to reference solutions are demonstrated. In particular, it is shown that—based on the reliable segmentation of the hand—one can robustly detect the joint positions in the hand by morphological constraints based on biological principles. Ways to further improve on our findings are suggested, and the applicability of current state-of-the-art instrumental machinery is demonstrated.
荧光光学成像中的手部分割与关节定位
手部风湿性疾病荧光光学成像(FOI)序列数据自动分析的关键一步在于手部和关节位置的精确检测。我们展示了一种分层算法的应用和推导,该算法依靠几何约束和高自适应阈值方法,能够对每个患者的手进行精确分割。演示了与参考解决方案相比所做的改进。特别是,在对手部进行可靠分割的基础上,利用基于生物学原理的形态学约束对手部关节位置进行鲁棒检测。提出了进一步改进研究结果的方法,并论证了当前最先进的仪器机械的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信