System Misuse Detection Via Informed Behavior Clustering and Modeling

Linara Adilova, Livin Natious, Siming Chen, Olivier Thonnard, Michael Kamp
{"title":"System Misuse Detection Via Informed Behavior Clustering and Modeling","authors":"Linara Adilova, Livin Natious, Siming Chen, Olivier Thonnard, Michael Kamp","doi":"10.1109/DSN-W.2019.00011","DOIUrl":null,"url":null,"abstract":"One of the main tasks of cybersecurity is recognizing malicious interactions with an arbitrary system. Currently, the logging information from each interaction can be collected in almost unrestricted amounts, but identification of attacks requires a lot of effort and time of security experts.We propose an approach for identifying fraud activity through modeling normal behavior in interactions with a system via machine learning methods, in particular LSTM neural networks. In order to enrich the modeling with system specific knowledge, we propose to use an interactive visual interface that allows security experts to identify semantically meaningful clusters of interactions. These clusters incorporate domain knowledge and lead to more precise behavior modeling via informed machine learning. We evaluate the proposed approach on a dataset containing logs of interactions with an administrative interface of login and security server. Our empirical results indicate that the informed modeling is capable of capturing normal behavior, which can then be used to detect abnormal behavior.","PeriodicalId":285649,"journal":{"name":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the main tasks of cybersecurity is recognizing malicious interactions with an arbitrary system. Currently, the logging information from each interaction can be collected in almost unrestricted amounts, but identification of attacks requires a lot of effort and time of security experts.We propose an approach for identifying fraud activity through modeling normal behavior in interactions with a system via machine learning methods, in particular LSTM neural networks. In order to enrich the modeling with system specific knowledge, we propose to use an interactive visual interface that allows security experts to identify semantically meaningful clusters of interactions. These clusters incorporate domain knowledge and lead to more precise behavior modeling via informed machine learning. We evaluate the proposed approach on a dataset containing logs of interactions with an administrative interface of login and security server. Our empirical results indicate that the informed modeling is capable of capturing normal behavior, which can then be used to detect abnormal behavior.
基于知情行为聚类和建模的系统误用检测
网络安全的主要任务之一是识别与任意系统的恶意交互。目前,从每次交互中收集的日志信息几乎可以不受限制地收集,但是识别攻击需要安全专家花费大量的精力和时间。我们提出了一种识别欺诈活动的方法,通过机器学习方法,特别是LSTM神经网络,对与系统交互中的正常行为进行建模。为了用系统特定的知识丰富建模,我们建议使用交互式可视化界面,允许安全专家识别语义上有意义的交互集群。这些集群结合了领域知识,并通过知情的机器学习导致更精确的行为建模。我们在包含与登录管理界面和安全服务器交互日志的数据集上评估了所提出的方法。我们的实证结果表明,知情建模能够捕获正常行为,然后可以用来检测异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信