The Effect of Data Augmentation and Optimization Technique on the Performance of EfficientNetV2 for Plant-Parasitic Nematode Identification

N. Shabrina, Ryukin Aranta Lika, S. Indarti
{"title":"The Effect of Data Augmentation and Optimization Technique on the Performance of EfficientNetV2 for Plant-Parasitic Nematode Identification","authors":"N. Shabrina, Ryukin Aranta Lika, S. Indarti","doi":"10.1109/IAICT59002.2023.10205661","DOIUrl":null,"url":null,"abstract":"Plant-parasitic nematodes are major agricultural pathogens contributing to massive crop losses worldwide. It is crucial to identify plant-parasitic nematodes to decide the best pest control and management strategy. The current identification technique is based on visual observation from nematode microscopic images done by the nematologist. However, this method requires a long process and is prone to error. A deep learning-based method can be implemented to speed up the current identification process. This study explores the effect of combining several data augmentation techniques, namely brightness, contrast, blur, and noise, on the performance of the EfficientNetV2B0 and EfficientNetV2M models for identifying plant-parasitic nematodes. Moreover, this study also compared three optimizers while training the models to find the best optimizer for each model and data augmentation. The results show that the EfficientNetV2B0 model yielded the highest test accuracy of 96.91% when employing no augmentation and trained using SGD and RMSProp optimizer. Furthermore, the EfficientNetV2M model gave the highest test accuracy of 96.91% when the combination of brightness and contrast augmentations was applied and trained using the RMSProp optimizer.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Plant-parasitic nematodes are major agricultural pathogens contributing to massive crop losses worldwide. It is crucial to identify plant-parasitic nematodes to decide the best pest control and management strategy. The current identification technique is based on visual observation from nematode microscopic images done by the nematologist. However, this method requires a long process and is prone to error. A deep learning-based method can be implemented to speed up the current identification process. This study explores the effect of combining several data augmentation techniques, namely brightness, contrast, blur, and noise, on the performance of the EfficientNetV2B0 and EfficientNetV2M models for identifying plant-parasitic nematodes. Moreover, this study also compared three optimizers while training the models to find the best optimizer for each model and data augmentation. The results show that the EfficientNetV2B0 model yielded the highest test accuracy of 96.91% when employing no augmentation and trained using SGD and RMSProp optimizer. Furthermore, the EfficientNetV2M model gave the highest test accuracy of 96.91% when the combination of brightness and contrast augmentations was applied and trained using the RMSProp optimizer.
数据增强和优化技术对高效netv2植物寄生线虫鉴定性能的影响
植物寄生线虫是造成世界范围内大量作物损失的主要农业病原体。植物寄生线虫的鉴定对于确定最佳的害虫防治策略至关重要。目前的鉴定技术是基于线虫学家对线虫显微图像的视觉观察。然而,这种方法需要一个漫长的过程,并且容易出错。可以实现基于深度学习的方法来加快当前的识别过程。本研究探讨了结合几种数据增强技术,即亮度、对比度、模糊和噪声,对效率netv2b0和效率netv2m模型识别植物寄生线虫的性能的影响。此外,本研究还在训练模型时比较了三种优化器,以找到每个模型和数据增强的最佳优化器。结果表明,在不使用增强并使用SGD和RMSProp优化器进行训练时,EfficientNetV2B0模型的测试准确率最高,达到96.91%。此外,当使用RMSProp优化器对亮度和对比度增强组合进行训练时,EfficientNetV2M模型的测试准确率最高,达到96.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信