Generalized operators and its application to a nonlinear fuzzy clustering model

M. Sato-Ilic
{"title":"Generalized operators and its application to a nonlinear fuzzy clustering model","authors":"M. Sato-Ilic","doi":"10.1109/CIBCB.2011.5948471","DOIUrl":null,"url":null,"abstract":"In this paper, a generalized operator based nonlinear fuzzy clustering model is proposed. Target data of this model is similarity data and the obtained similarity data has various structures. Therefore, for general-purpose, the generalized operators are defined on a product space of linear spaces in order to consider the variety of the structures of similarity between a pair of objects by revising the aggregation operators from the binary operator to a function on a product space. Ị umerical examples using artificial data and diagnostic breast cancer data show the potential utility of the general-purpose model and better performance when compared with an ordinary nonlinear fuzzy clustering model such as a kernel fuzzy clustering model.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a generalized operator based nonlinear fuzzy clustering model is proposed. Target data of this model is similarity data and the obtained similarity data has various structures. Therefore, for general-purpose, the generalized operators are defined on a product space of linear spaces in order to consider the variety of the structures of similarity between a pair of objects by revising the aggregation operators from the binary operator to a function on a product space. Ị umerical examples using artificial data and diagnostic breast cancer data show the potential utility of the general-purpose model and better performance when compared with an ordinary nonlinear fuzzy clustering model such as a kernel fuzzy clustering model.
广义算子及其在非线性模糊聚类模型中的应用
提出了一种基于广义算子的非线性模糊聚类模型。该模型的目标数据为相似度数据,得到的相似度数据具有多种结构。因此,为了考虑一对对象之间相似性结构的变化,将聚合算子从二元算子修正为乘积空间上的函数,在线性空间的乘积空间上定义了广义算子。Ị使用人工数据和乳腺癌诊断数据的数值示例表明,与核模糊聚类模型等普通非线性模糊聚类模型相比,通用模型具有潜在的实用性和更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信