Weakly supervised alignment of image manifolds with semantic ties

D. Tuia
{"title":"Weakly supervised alignment of image manifolds with semantic ties","authors":"D. Tuia","doi":"10.1109/IGARSS.2014.6947248","DOIUrl":null,"url":null,"abstract":"Aligning data distributions that underwent spectral distortions related to acquisition conditions is a key issue to improve the performance of classifiers applied to multi-temporal and multi-angular images. In this paper, we propose a feature extraction methodology, which aligns data manifolds based on their internal geometric structure and on a series of object correspondences highlighted on each image, or tie points. The weakly supervised manifold alignment (WeSMA) is a feature extractor that allows to define a common latent space, in which the images can be projected and processed by the same classifier. WeSMA relaxes the need for labeled pixels in all acquisitions of previous manifold alignment methods, an heavy constraint for remote sensing applications. Experiments on a set of World-View II images acquired at different viewing angles show the interest of the method that can compensate the spectral shift generated by the angular distortion without labels issued from the off-nadir image.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aligning data distributions that underwent spectral distortions related to acquisition conditions is a key issue to improve the performance of classifiers applied to multi-temporal and multi-angular images. In this paper, we propose a feature extraction methodology, which aligns data manifolds based on their internal geometric structure and on a series of object correspondences highlighted on each image, or tie points. The weakly supervised manifold alignment (WeSMA) is a feature extractor that allows to define a common latent space, in which the images can be projected and processed by the same classifier. WeSMA relaxes the need for labeled pixels in all acquisitions of previous manifold alignment methods, an heavy constraint for remote sensing applications. Experiments on a set of World-View II images acquired at different viewing angles show the interest of the method that can compensate the spectral shift generated by the angular distortion without labels issued from the off-nadir image.
具有语义联系的图像流形的弱监督对齐
校正与采集条件相关的光谱畸变的数据分布是提高多时、多角度图像分类器性能的关键问题。在本文中,我们提出了一种特征提取方法,该方法根据数据流形的内部几何结构和每张图像上突出显示的一系列对象对应或结合点来对齐数据流形。弱监督流形排列(WeSMA)是一种特征提取器,它允许定义一个共同的潜在空间,在这个潜在空间中,图像可以被同一个分类器投影和处理。WeSMA放松了以前的流形对齐方法的所有获取中对标记像素的需求,这是遥感应用的一个严重限制。在不同视角下采集的一组World-View II图像上进行的实验表明,该方法可以补偿由于角度畸变而产生的光谱偏移,而不需要对离最低点图像进行标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信