K-mer Counting: memory-efficient strategy, parallel computing and field of application for Bioinformatics

Ming Xiao, Jiakun Li, Song Hong, Yongtao Yang, Junhua Li, Jian-xin Wang, Jian Yang, W. Ding, Le Zhang
{"title":"K-mer Counting: memory-efficient strategy, parallel computing and field of application for Bioinformatics","authors":"Ming Xiao, Jiakun Li, Song Hong, Yongtao Yang, Junhua Li, Jian-xin Wang, Jian Yang, W. Ding, Le Zhang","doi":"10.1109/BIBM.2018.8621325","DOIUrl":null,"url":null,"abstract":"Currently, k-mer counting is an important algorithm for bioinformatics research. This review lists the major application fields of k-mer counting in Bioinformatics at the beginning. Next, we introduce the commonly used memory-efficient strategy for k-mer counting tools, because the large amount of memory request is a bottleneck of k-mer counting tools. Next we illustrate the current parallel computing technologies for k-mer counting tool. Finally, we discuss the future study for k-mer counting.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Currently, k-mer counting is an important algorithm for bioinformatics research. This review lists the major application fields of k-mer counting in Bioinformatics at the beginning. Next, we introduce the commonly used memory-efficient strategy for k-mer counting tools, because the large amount of memory request is a bottleneck of k-mer counting tools. Next we illustrate the current parallel computing technologies for k-mer counting tool. Finally, we discuss the future study for k-mer counting.
K-mer计数:内存效率策略、并行计算及其在生物信息学中的应用领域
k-mer计数是目前生物信息学研究的一种重要算法。本文首先综述了k-mer计数在生物信息学中的主要应用领域。接下来,我们将介绍k-mer计数工具常用的内存效率策略,因为大量的内存请求是k-mer计数工具的瓶颈。接下来,我们阐述了当前k-mer计数工具的并行计算技术。最后,对k-mer计数的未来研究进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信