Adaptive and Variational Continuous Time Recurrent Neural Networks

Stefan Heinrich, Tayfun Alpay, S. Wermter
{"title":"Adaptive and Variational Continuous Time Recurrent Neural Networks","authors":"Stefan Heinrich, Tayfun Alpay, S. Wermter","doi":"10.1109/DEVLRN.2018.8761019","DOIUrl":null,"url":null,"abstract":"In developmental robotics, we model cognitive processes, such as body motion or language processing, and study them in natural real-world conditions. Naturally, these sequential processes inherently occur on different continuous timescales. Similar as our brain can cope with them by hierarchical abstraction and coupling of different processing modes, computational recurrent neural models need to be capable of adapting to temporally different characteristics of sensorimotor information. In this paper, we propose adaptive and variational mechanisms that can tune the timescales in Continuous Time Recurrent Neural Networks (CTRNNs) to the characteristics of the data. We study these mechanisms in both synthetic and natural sequential tasks to contribute to a deeper understanding of how the networks develop multiple timescales and represent inherent periodicities and fluctuations. Our findings include that our Adaptive CTRNN (ACTRNN) model self-organises timescales towards both representing short-term dependencies and modulating representations based on long-term dependencies during end-to-end learning.","PeriodicalId":236346,"journal":{"name":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2018.8761019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In developmental robotics, we model cognitive processes, such as body motion or language processing, and study them in natural real-world conditions. Naturally, these sequential processes inherently occur on different continuous timescales. Similar as our brain can cope with them by hierarchical abstraction and coupling of different processing modes, computational recurrent neural models need to be capable of adapting to temporally different characteristics of sensorimotor information. In this paper, we propose adaptive and variational mechanisms that can tune the timescales in Continuous Time Recurrent Neural Networks (CTRNNs) to the characteristics of the data. We study these mechanisms in both synthetic and natural sequential tasks to contribute to a deeper understanding of how the networks develop multiple timescales and represent inherent periodicities and fluctuations. Our findings include that our Adaptive CTRNN (ACTRNN) model self-organises timescales towards both representing short-term dependencies and modulating representations based on long-term dependencies during end-to-end learning.
自适应和变分连续时间递归神经网络
在发展机器人中,我们模拟认知过程,如身体运动或语言处理,并在自然的现实世界条件下研究它们。自然地,这些顺序过程固有地发生在不同的连续时间尺度上。就像我们的大脑可以通过分层抽象和不同处理模式的耦合来应对它们一样,计算递归神经模型需要能够适应感觉运动信息的时间不同特征。在本文中,我们提出了自适应和变分机制,可以根据数据的特征调整连续时间递归神经网络(CTRNNs)的时间尺度。我们在合成和自然顺序任务中研究这些机制,以有助于更深入地了解网络如何发展多个时间尺度并表示固有的周期性和波动。我们的研究结果包括,我们的自适应CTRNN (ACTRNN)模型在端到端学习期间自组织时间尺度,以表示短期依赖关系和基于长期依赖关系的调制表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信