Adaptive Collaborative Beamforming in Wireless Sensor Network Based on Modified Backtracking Search Algorithm

J. J. Chew, N. N. N. A. Malik, L. Idoumghar, N. A. A. Latiff, Najla Ilyana Ab Majid
{"title":"Adaptive Collaborative Beamforming in Wireless Sensor Network Based on Modified Backtracking Search Algorithm","authors":"J. J. Chew, N. N. N. A. Malik, L. Idoumghar, N. A. A. Latiff, Najla Ilyana Ab Majid","doi":"10.1109/ISTT56288.2022.9966538","DOIUrl":null,"url":null,"abstract":"Collaborative beamforming (CB) in wireless sensor network (WSN) increases the transmission distance, which allow nodes to transmit data directly to the base station without relying on multi-hop transmissions. The choice of sensor node location directly affects the sidelobe levels of the radiation beampattern, which can affect the energy efficiency of the WSN. Therefore, an Artificial Intelligence algorithm, i.e. the Backtracking Search Algorithm (BSA) has been developed and implemented to optimize the radiation beampattern performance by finding the suitable location of the sensor nodes based on the linear array sensor nodes arrangement. The proposed Modified BSA-based Linear Array (LinearBSA) shows a superior improvement compared to the conventional linear array (LFA) in desired performance, i.e. minimize sidelobe level (SLL) and adaptive main beam angle. Performance on 8-, 12-and 16-node LinearBSA shows an improvement in radiation beampattern performance particularly in SLL minimization in any desired adaptive main beam angle.","PeriodicalId":389716,"journal":{"name":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTT56288.2022.9966538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative beamforming (CB) in wireless sensor network (WSN) increases the transmission distance, which allow nodes to transmit data directly to the base station without relying on multi-hop transmissions. The choice of sensor node location directly affects the sidelobe levels of the radiation beampattern, which can affect the energy efficiency of the WSN. Therefore, an Artificial Intelligence algorithm, i.e. the Backtracking Search Algorithm (BSA) has been developed and implemented to optimize the radiation beampattern performance by finding the suitable location of the sensor nodes based on the linear array sensor nodes arrangement. The proposed Modified BSA-based Linear Array (LinearBSA) shows a superior improvement compared to the conventional linear array (LFA) in desired performance, i.e. minimize sidelobe level (SLL) and adaptive main beam angle. Performance on 8-, 12-and 16-node LinearBSA shows an improvement in radiation beampattern performance particularly in SLL minimization in any desired adaptive main beam angle.
基于改进回溯搜索算法的无线传感器网络自适应协同波束形成
无线传感器网络(WSN)中的协同波束形成(CB)增加了传输距离,允许节点直接向基站传输数据,而不依赖于多跳传输。传感器节点位置的选择直接影响辐射波束方向图的旁瓣电平,从而影响无线传感器网络的能量效率。为此,本文开发并实现了一种基于线性阵列传感器节点布置,通过寻找传感器节点的合适位置来优化辐射波束图性能的人工智能算法,即回溯搜索算法(Backtracking Search algorithm, BSA)。提出的基于改进bsa的线性阵列(LinearBSA)在最小化副瓣电平(SLL)和自适应主波束角等性能方面比传统线性阵列(LFA)有了显著的提高。在8、12和16节点线性bsa上的性能显示出辐射波束图性能的改善,特别是在任何期望的自适应主波束角度下的SLL最小化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信