Data utility and privacy protection trade-off in k-anonymisation

G. Loukides, J. Shao
{"title":"Data utility and privacy protection trade-off in k-anonymisation","authors":"G. Loukides, J. Shao","doi":"10.1145/1379287.1379296","DOIUrl":null,"url":null,"abstract":"K-anonymisation is an approach to protecting privacy contained within a dataset. A good k-anonymisation algorithm should anonymise a dataset in such a way that private information contained within it is hidden, yet the anonymised data is still useful in intended applications. However, maximising both data utility and privacy protection in k-anonymisation is not possible. Existing methods derive k-anonymisations by trying to maximise utility while satisfying a required level of protection. In this paper, we propose a method that attempts to optimise the trade-off between utility and protection. We introduce a measure that captures both utility and protection, and an algorithm that exploits this measure using a combination of clustering and partitioning techniques. Our experiments show that the proposed method is capable of producing k-anonymisations with required utility and protection trade-off and with a performance scalable to large datasets.","PeriodicalId":245552,"journal":{"name":"International Conference on Pattern Analysis and Intelligent Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Analysis and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1379287.1379296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

K-anonymisation is an approach to protecting privacy contained within a dataset. A good k-anonymisation algorithm should anonymise a dataset in such a way that private information contained within it is hidden, yet the anonymised data is still useful in intended applications. However, maximising both data utility and privacy protection in k-anonymisation is not possible. Existing methods derive k-anonymisations by trying to maximise utility while satisfying a required level of protection. In this paper, we propose a method that attempts to optimise the trade-off between utility and protection. We introduce a measure that captures both utility and protection, and an algorithm that exploits this measure using a combination of clustering and partitioning techniques. Our experiments show that the proposed method is capable of producing k-anonymisations with required utility and protection trade-off and with a performance scalable to large datasets.
k-匿名中数据效用与隐私保护的权衡
k -匿名是一种保护数据集中包含的隐私的方法。一个好的k-匿名算法应该匿名化一个数据集,这样包含在其中的私人信息是隐藏的,但匿名数据在预期的应用程序中仍然是有用的。然而,在k-匿名中最大化数据效用和隐私保护是不可能的。现有的方法通过试图最大化效用来获得k-匿名,同时满足所需的保护水平。在本文中,我们提出了一种尝试优化效用与保护之间权衡的方法。我们介绍了一种同时捕获效用和保护的度量,以及一种使用聚类和分区技术组合利用该度量的算法。我们的实验表明,所提出的方法能够产生具有所需效用和保护权衡的k-匿名,并且具有可扩展到大型数据集的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信