Near-duplicate detection using GPU-based simhash scheme

Xiaowen Feng, Hai Jin, Ran Zheng, Lei Zhu
{"title":"Near-duplicate detection using GPU-based simhash scheme","authors":"Xiaowen Feng, Hai Jin, Ran Zheng, Lei Zhu","doi":"10.1109/SMARTCOMP.2014.7043862","DOIUrl":null,"url":null,"abstract":"With the rapid growth of data, near-duplicate documents bearing high similarity are abundant. Elimination of near-duplicates can reduce storage cost and improve the quality of search indexes in data mining. A challenging problem is to find near-duplicate records in large-scale collections efficiently. There have already been several efforts on implementing near-duplicate detection on different architectures. In this paper, a new implementation, using a special hash function namely simhash, is proposed to identify near-duplicate documents on CUDA enabled devices. Two mechanisms are designed to achieve higher performance, including swapping and dynamic allocating. Experimental results show that our parallel implementation outperforms the serial CPU version, achieving up to 18 times.","PeriodicalId":169858,"journal":{"name":"2014 International Conference on Smart Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Smart Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2014.7043862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the rapid growth of data, near-duplicate documents bearing high similarity are abundant. Elimination of near-duplicates can reduce storage cost and improve the quality of search indexes in data mining. A challenging problem is to find near-duplicate records in large-scale collections efficiently. There have already been several efforts on implementing near-duplicate detection on different architectures. In this paper, a new implementation, using a special hash function namely simhash, is proposed to identify near-duplicate documents on CUDA enabled devices. Two mechanisms are designed to achieve higher performance, including swapping and dynamic allocating. Experimental results show that our parallel implementation outperforms the serial CPU version, achieving up to 18 times.
使用基于gpu的simhash方案进行近重复检测
随着数据量的快速增长,具有高相似度的近重复文档大量出现。在数据挖掘中,消除近重复可以降低存储成本,提高搜索索引的质量。一个具有挑战性的问题是如何有效地在大规模集合中找到接近重复的记录。在不同的体系结构上实现近重复检测已经有了一些努力。在本文中,提出了一种新的实现,使用特殊的散列函数即simhash来识别支持CUDA的设备上的近重复文档。设计了两种机制来实现更高的性能,包括交换和动态分配。实验结果表明,我们的并行实现比串行CPU版本性能更好,达到了串行CPU版本的18倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信