Toward application-specific memory reconfiguration for energy efficiency

Pietro Cicotti, L. Carrington, A. Chien
{"title":"Toward application-specific memory reconfiguration for energy efficiency","authors":"Pietro Cicotti, L. Carrington, A. Chien","doi":"10.1145/2536430.2536434","DOIUrl":null,"url":null,"abstract":"The end of Dennard scaling has made energy-efficiency a critical challenge in the continued increase of computing performance. An important approach to increasing energy-efficiency is hardware customization. In this study we explore the opportunity for energy-efficiency via memory hierarchy customization and present a methodology to identify application-specific energy efficient configurations. Using a workload of 37 diverse benchmarks, we address three key questions: 1) How much energy saving is possible?, 2) How much reconfiguration is required?, and 3) Can we use application characterization to automatically select an energy-optimal memory hierarchy configuration? Our results show that the potential benefit is large -- average reductions close to 70% in memory hierarchy energy with no performance loss. Further, our results show that the number of configurations need not be large; 13 carefully chosen configurations can deliver 93% of this benefit (64% energy reduction), and even coarse-grain reconfigurations of an existing hierarchy can deliver 81% of this benefit (56% energy reduction), suggesting that reconfigurable hierarchies may be practically realizable. Finally, as a first step towards automatic reconfiguration, we explore application characterization via reuse distance as a guide to select the best memory hierarchy configuration; we show that reuse distance can effectively predict the application-specific configuration which will both maintain performance and deliver energy efficiency.","PeriodicalId":285336,"journal":{"name":"International Workshop on Energy Efficient Supercomputing","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Energy Efficient Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536430.2536434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The end of Dennard scaling has made energy-efficiency a critical challenge in the continued increase of computing performance. An important approach to increasing energy-efficiency is hardware customization. In this study we explore the opportunity for energy-efficiency via memory hierarchy customization and present a methodology to identify application-specific energy efficient configurations. Using a workload of 37 diverse benchmarks, we address three key questions: 1) How much energy saving is possible?, 2) How much reconfiguration is required?, and 3) Can we use application characterization to automatically select an energy-optimal memory hierarchy configuration? Our results show that the potential benefit is large -- average reductions close to 70% in memory hierarchy energy with no performance loss. Further, our results show that the number of configurations need not be large; 13 carefully chosen configurations can deliver 93% of this benefit (64% energy reduction), and even coarse-grain reconfigurations of an existing hierarchy can deliver 81% of this benefit (56% energy reduction), suggesting that reconfigurable hierarchies may be practically realizable. Finally, as a first step towards automatic reconfiguration, we explore application characterization via reuse distance as a guide to select the best memory hierarchy configuration; we show that reuse distance can effectively predict the application-specific configuration which will both maintain performance and deliver energy efficiency.
面向特定应用程序的内存重新配置,以提高能效
Dennard缩放的终结使得能源效率成为持续提高计算性能的关键挑战。提高能源效率的一个重要方法是硬件定制。在本研究中,我们探讨了通过内存层次定制来提高能效的机会,并提出了一种方法来确定特定应用的能效配置。使用37个不同基准的工作负载,我们解决了三个关键问题:1)可能节省多少能源?2)需要多少重新配置?3)我们是否可以使用应用程序特性来自动选择能量最优的内存层次结构配置?我们的结果表明,潜在的好处是巨大的——在没有性能损失的情况下,平均减少接近70%的内存层次能量。此外,我们的结果表明,配置的数量不需要很大;13个精心选择的配置可以提供93%的好处(减少64%的能量),即使是现有层次结构的粗粒度重新配置也可以提供81%的好处(减少56%的能量),这表明可重构的层次结构实际上是可以实现的。最后,作为实现自动重新配置的第一步,我们通过重用距离来探索应用程序特征,作为选择最佳内存层次结构配置的指南;我们表明,重用距离可以有效地预测既能保持性能又能提供能源效率的特定于应用程序的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信