MLS-GAN: Multi-Level Semantic Guided Image Colorization

Xinning Chai, Xibei Liu, Hengsheng Zhang, Han Wang, Li Song, Liean Cao
{"title":"MLS-GAN: Multi-Level Semantic Guided Image Colorization","authors":"Xinning Chai, Xibei Liu, Hengsheng Zhang, Han Wang, Li Song, Liean Cao","doi":"10.1109/ICIP46576.2022.9897614","DOIUrl":null,"url":null,"abstract":"Image colorization predicts plausible color versions of given grayscale images. Recently, several methods incorporate image semantics to assist image colorization and have shown impressive performance. To further exploit and take full advantage of more semantic information, in this paper, we propose a Multi-Level Semantic guided Generative Adversarial Network (MLS-GAN) for image colorization. Specifically, we utilize three different levels of semantics to guide the colorization process: image level, segmentation level and contextual level. Image-level classification semantics is used to learn category and high-level semantics, ensuring the reasonability of color results. At the segmentation level, multi-scale saliency map semantics is extracted to provide figure-background separation information, which can efficiently alleviate semantic confusion, especially for images with complex backgrounds. Furthermore, we novelly use non-local blocks to capture long-range semantic dependencies at the contextual level. Experiments show that our method enhances color consistency and can produce more vivid color in visually important regions, outperforming state-of-the-art methods qualitatively and quantitatively.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image colorization predicts plausible color versions of given grayscale images. Recently, several methods incorporate image semantics to assist image colorization and have shown impressive performance. To further exploit and take full advantage of more semantic information, in this paper, we propose a Multi-Level Semantic guided Generative Adversarial Network (MLS-GAN) for image colorization. Specifically, we utilize three different levels of semantics to guide the colorization process: image level, segmentation level and contextual level. Image-level classification semantics is used to learn category and high-level semantics, ensuring the reasonability of color results. At the segmentation level, multi-scale saliency map semantics is extracted to provide figure-background separation information, which can efficiently alleviate semantic confusion, especially for images with complex backgrounds. Furthermore, we novelly use non-local blocks to capture long-range semantic dependencies at the contextual level. Experiments show that our method enhances color consistency and can produce more vivid color in visually important regions, outperforming state-of-the-art methods qualitatively and quantitatively.
MLS-GAN:多层次语义引导图像着色
图像着色预测给定灰度图像的可信颜色版本。最近,有几种方法结合图像语义来辅助图像着色,并显示出令人印象深刻的性能。为了进一步挖掘和充分利用更多的语义信息,本文提出了一种用于图像着色的多层次语义引导生成对抗网络(MLS-GAN)。具体来说,我们利用三个不同层次的语义来指导着色过程:图像层、分割层和上下文层。使用图像级分类语义学习类别和高级语义,保证颜色结果的合理性。在分割层面,提取多尺度显著性图语义,提供图背景分离信息,可以有效缓解语义混淆,特别是对于背景复杂的图像。此外,我们新颖地使用非局部块来捕获上下文级别的远程语义依赖。实验表明,我们的方法提高了颜色一致性,可以在视觉上重要的区域产生更生动的颜色,在定性和定量上都优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信