H. Gauch, V. Bisio, S. Rossin, F. Montomoli, V. Tagarielli
{"title":"Transient Loading on Turbomachinery Packages due to Pressure Waves Caused by Accidental Deflagration Events","authors":"H. Gauch, V. Bisio, S. Rossin, F. Montomoli, V. Tagarielli","doi":"10.1115/gt2019-90942","DOIUrl":null,"url":null,"abstract":"\n In this study we present the application of numerical and analytical models to predict the transient loading of structures by impinging pressure and shock waves in air, which have been recently developed by the authors. Non-dimensional design maps are provided which yield predictions of the maximum loads on structures as a function of the problem parameters. Practical example applications, with reference to typical structures used in turbomachinery packages, are presented. These examples demonstrate the superiority of the new modelling techniques to current industrial design guidelines which are mostly extrapolated from simplified methods developed for shock waves. Finally, conclusions are drawn regarding the nature of the loading exerted on the structure in different regimes of problem parameters.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study we present the application of numerical and analytical models to predict the transient loading of structures by impinging pressure and shock waves in air, which have been recently developed by the authors. Non-dimensional design maps are provided which yield predictions of the maximum loads on structures as a function of the problem parameters. Practical example applications, with reference to typical structures used in turbomachinery packages, are presented. These examples demonstrate the superiority of the new modelling techniques to current industrial design guidelines which are mostly extrapolated from simplified methods developed for shock waves. Finally, conclusions are drawn regarding the nature of the loading exerted on the structure in different regimes of problem parameters.