The Use of Artificial Neural Networks for Predicting Response of Frequency Selective Surfaces

R. Arya, Rahul Sawlani, Abhinav Gola, Animesh, Hulusi Açikgöz, Konark Sharma, M. Tripathy
{"title":"The Use of Artificial Neural Networks for Predicting Response of Frequency Selective Surfaces","authors":"R. Arya, Rahul Sawlani, Abhinav Gola, Animesh, Hulusi Açikgöz, Konark Sharma, M. Tripathy","doi":"10.1109/ICCE-Berlin50680.2020.9352189","DOIUrl":null,"url":null,"abstract":"In the real world problems, mostly there is difference between dimensions of simulated and corresponding fabricated structures. In case of Frequency Selective Surface (FSS), this variation can be even larger as the frequency gets into terahertz range. One of the approach to study such variations is metamodeling. In this work, we address the problem of modeling such structures with statistical variations in their geometries by using artificial neural network (ANN). We train and test this metamodel and finally show its performance statistics.","PeriodicalId":438631,"journal":{"name":"2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Berlin50680.2020.9352189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the real world problems, mostly there is difference between dimensions of simulated and corresponding fabricated structures. In case of Frequency Selective Surface (FSS), this variation can be even larger as the frequency gets into terahertz range. One of the approach to study such variations is metamodeling. In this work, we address the problem of modeling such structures with statistical variations in their geometries by using artificial neural network (ANN). We train and test this metamodel and finally show its performance statistics.
利用人工神经网络预测频率选择曲面的响应
在实际问题中,仿真结构的尺寸与相应的装配式结构的尺寸往往存在差异。在频率选择表面(FSS)的情况下,随着频率进入太赫兹范围,这种变化可能会更大。研究这种变化的方法之一是元建模。在这项工作中,我们通过使用人工神经网络(ANN)来解决具有几何统计变化的此类结构建模问题。我们对该元模型进行了训练和测试,最后给出了其性能统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信